Recent advances in machine learning interatomic potentials for cross-scale computational simulation of materials

被引:2
|
作者
Ran, Nian [1 ,2 ]
Yin, Liang [1 ,2 ,3 ]
Qiu, Wujie [1 ,2 ,4 ]
Liu, Jianjun [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine M, State Key Lab High Performance Ceram, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Chem & Mat Sci, Hangzhou 310024, Peoples R China
[4] Shanghai Polytech Univ, Sch Math Phys & Stat, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
machine learning interatomic potential; cross-scale computational simulation; structure sampling; encoding structure; fitting method; CRYSTAL-STRUCTURE PREDICTION; NEURAL-NETWORK POTENTIALS; TOTAL-ENERGY CALCULATIONS; MOLECULAR-DYNAMICS; GLOBAL OPTIMIZATION; THERMAL-CONDUCTIVITY; ATOMIC-STRUCTURE; CONSTRUCTION; GENERATION; DIFFUSION;
D O I
10.1007/s40843-023-2836-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, machine learning interatomic potentials (ML-IPs) have attracted extensive attention in materials science, chemistry, biology, and various other fields, particularly for achieving higher precision and efficiency in conducting large-scale atomic simulations. This review, situated in the ML-IP applications in cross-scale computational models of materials, offers a comprehensive overview of structure sampling, structure descriptors, and fitting methodologies for ML-IPs. These methodologies empower ML-IPs to depict the dynamics and thermodynamics of molecules and crystals with remarkable accuracy and efficiency. More efficient and advanced techniques from interdisciplinary research field play an important role in opening a wide spectrum of applications spanning diverse temporal and spatial dimensions. Therefore, ML-IP method renders the stage for future research and innovation promising revolutionary opportunities across multiple domains.
引用
收藏
页码:1082 / 1100
页数:19
相关论文
共 50 条
  • [1] Recent advances in machine learning interatomic potentials for cross-scale computational simulation of materials机器学习原子间势在材料跨尺度计算模拟中的最新进展
    Nian Ran
    Liang Yin
    Wujie Qiu
    Jianjun Liu
    [J]. Science China Materials, 2024, 67 : 1082 - 1100
  • [2] Recent advances and outstanding challenges for machine learning interatomic potentials
    Ko, Tsz Wai
    Ong, Shyue Ping
    [J]. NATURE COMPUTATIONAL SCIENCE, 2023, 3 (12): : 998 - 1000
  • [3] Recent advances and outstanding challenges for machine learning interatomic potentials
    Tsz Wai Ko
    Shyue Ping Ong
    [J]. Nature Computational Science, 2023, 3 : 998 - 1000
  • [5] Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials
    Arabha, Saeed
    Aghbolagh, Zahra Shokri
    Ghorbani, Khashayar
    Hatam-Lee, S. Milad
    Rajabpour, Ali
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (21)
  • [6] Polymers simulation using machine learning interatomic potentials
    Long, Teng
    Li, Jia
    Wang, Chenlu
    Wang, Hua
    Cheng, Xiao
    Lu, Haifeng
    Zhang, Ying
    Zhou, Chuanjian
    [J]. POLYMER, 2024, 308
  • [7] Machine learning for cross-scale microscopy of viruses
    Petkidis, Anthony
    Andriasyan, Vardan
    Greber, Urs F.
    [J]. CELL REPORTS METHODS, 2023, 3 (09):
  • [8] Machine Learning Interatomic Potentials as Emerging Tools for Materials Science
    Deringer, Volker L.
    Caro, Miguel A.
    Csanyi, Gabor
    [J]. ADVANCED MATERIALS, 2019, 31 (46)
  • [9] Lattice dynamics simulation using machine learning interatomic potentials
    Ladygin, V. V.
    Korotaev, P. Yu
    Yanilkin, A., V
    Shapeev, A., V
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 172
  • [10] Active learning of uniformly accurate interatomic potentials for materials simulation
    Zhang, Linfeng
    Lin, De-Ye
    Wang, Han
    Car, Roberto
    E, Weinan
    [J]. PHYSICAL REVIEW MATERIALS, 2019, 3 (02)