A historical perspective of biomedical explainable AI research

被引:6
|
作者
Malinverno, Luca [1 ]
Barros, Vesna [2 ,3 ]
Ghisoni, Francesco [1 ]
Visona, Giovanni [4 ]
Kern, Roman [5 ,6 ]
Nickel, Philip J. [7 ]
Ventura, Barbara Elvira [1 ]
Simic, Ilija [6 ]
Stryeck, Sarah [8 ]
Manni, Francesca [9 ]
Ferri, Cesar [10 ]
Jean-Quartier, Claire [11 ]
Genga, Laura [7 ]
Schweikert, Gabriele [12 ]
Lovri, Mario [6 ,13 ]
Rosen-Zvi, Michal [2 ,3 ]
机构
[1] Porini SRL, Via Cavour,2, I-22074 Lomazzo, Italy
[2] Univ Haifa Campus, IBM R&D Labs, AI Accelerated Healthcare & Life Sci Discovery, Mt Carmel, IL-3498825 Hefa, Israel
[3] Hebrew Univ Jerusalem, Ein Kerem Campus, IL-9112102 Jerusalem, Israel
[4] Max Planck Inst Intelligent Syst, Empir Inference, D-72076 Tubingen, Germany
[5] Graz Univ Technol, Inst Interact Syst & Data Sci, Sandgasse 36-III, A-8010 Graz, Austria
[6] Know Ctr GmbH, Sandgasse 36-4A, A-8010 Graz, Austria
[7] Eindhoven Univ Technol, NL-5135 MB Eindhoven, Netherlands
[8] Res Ctr Pharmaceut Engn GmbH, Inffeldgasse 13, A-8010 Graz, Austria
[9] Philips Res, HTC 4, NL-5656 AE Eindhoven, Netherlands
[10] Univ Politecn Valencia, VRAIN, Camino Vera s-n, Valencia 46022, Spain
[11] Graz Univ Technol, Res Data Management, Brockmanngasse 84, A-8010 Graz, Austria
[12] Univ Dundee, Sch Life Sci, Dow St, Dundee DD1 5EH, Scotland
[13] Inst Anthropol Res, Ctr Appl Bioanthropol, Zagreb 10000, Croatia
来源
PATTERNS | 2023年 / 4卷 / 09期
关键词
BLACK-BOX; CLASSIFICATION; COVID-19;
D O I
10.1016/j.patter.2023.100830
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The black-box nature of most artificial intelligence (AI) models encourages the development of explainability methods to engender trust into the AI decision-making process. Such methods can be broadly categorized into two main types: post hoc explanations and inherently interpretable algorithms. We aimed at analyzing the possible associations between COVID-19 and the push of explainable AI (XAI) to the forefront of biomed-ical research. We automatically extracted from the PubMed database biomedical XAI studies related to con-cepts of causality or explainability and manually labeled 1,603 papers with respect to XAI categories. To compare the trends pre-and post-COVID-19, we fit a change point detection model and evaluated significant changes in publication rates. We show that the advent of COVID-19 in the beginning of 2020 could be the driving factor behind an increased focus concerning XAI, playing a crucial role in accelerating an already evolving trend. Finally, we present a discussion with future societal use and impact of XAI technologies and potential future directions for those who pursue fostering clinical trust with interpretable machine learning models.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The challenges of explainable AI in biomedical data science
    Henry Han
    Xiangrong Liu
    [J]. BMC Bioinformatics, 22
  • [2] ANIMALS IN BIOMEDICAL-RESEARCH - A HISTORICAL-PERSPECTIVE
    SANFORD, J
    [J]. LABORATORY ANIMALS, 1987, 21 (02) : 164 - 164
  • [3] The challenges of explainable AI in biomedical data science INTRODUCTION
    Han, Henry
    Liu, Xiangrong
    [J]. BMC BIOINFORMATICS, 2022, 22 (SUPPL 12)
  • [4] The Role of Explainable AI in the Research Field of AI Ethics
    Vainio-Pekka, Heidi
    Agbese, Mamia Ori-Otse
    Jantunen, Marianna
    Vakkuri, Ville
    Mikkonen, Tommi
    Rousi, Rebekah
    Abrahamsson, Pekka
    [J]. ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2023, 13 (04)
  • [5] A historical perspective of explainable Artificial Intelligence
    Confalonieri, Roberto
    Coba, Ludovik
    Wagner, Benedikt
    Besold, Tarek R.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (01)
  • [6] Research Agenda for Basic Explainable AI
    Lukyanenko, Roman
    Castellanos, Arturo
    Samuel, Binny M.
    Tremblay, Monica
    Maass, Wolfgang
    [J]. DIGITAL INNOVATION AND ENTREPRENEURSHIP (AMCIS 2021), 2021,
  • [7] Explainable and Ethical AI: A Perspective on Argumentation and Logic Programming
    Calegari, Roberta
    Omicini, Andrea
    Sartor, Giovanni
    [J]. AIXIA 2020 - ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 12414 : 19 - 36
  • [8] Explainable AI and Blockchain for Metaverse: A Security and Privacy Perspective
    Kumar, Prabhat
    Kumar, Randhir
    Aloqaily, Moayad
    Islam, A. K. M. Najmul
    [J]. IEEE CONSUMER ELECTRONICS MAGAZINE, 2024, 13 (03) : 90 - 97
  • [9] EXPLAINABLE AI (XAI) IN BIOMEDICAL SIGNAL AND IMAGE PROCESSING: PROMISES AND CHALLENGES
    Yang, Guang
    Rao, Arvind
    Fernandez-Maloigne, Christine
    Calhoun, Vince
    Menegaz, Gloria
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1531 - 1535
  • [10] Expl(AI)n It to Me - Explainable AI and Information Systems Research
    Bauer, Kevin
    Hinz, Oliver
    van der Aalst, Wil
    Weinhardt, Christof
    [J]. BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2021, 63 (02) : 79 - 82