A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses

被引:11
|
作者
Gebrechorkos, Solomon [1 ,2 ]
Leyland, Julian [1 ]
Slater, Louise [2 ]
Wortmann, Michel [2 ]
Ashworth, Philip J. [3 ]
Bennett, Georgina L. [4 ]
Boothroyd, Richard [5 ]
Cloke, Hannah [6 ]
Delorme, Pauline [7 ]
Griffith, Helen [6 ]
Hardy, Richard [8 ]
Hawker, Laurence [9 ]
Mclelland, Stuart [7 ]
Neal, Jeffrey [9 ]
Nicholas, Andrew [4 ]
Tatem, Andrew J. [1 ]
Vahidi, Ellie [4 ]
Parsons, Daniel R. [7 ]
Darby, Stephen E. [1 ]
机构
[1] Univ Southampton, Sch Geog & Environm Sci, Southampton SO17 1BJ, England
[2] Univ Oxford, Sch Geog & Environm, Oxford, England
[3] Univ Brighton, Sch Appl Sci, Brighton BN2 4AT, Sussex, England
[4] Univ Exeter, Fac Environm Sci & Econ, Dept Geog, Exeter EX4 4RJ, England
[5] Univ Glasgow, Sch Geog & Earth Sci, Glasgow, Scotland
[6] Univ Reading, Geog & Environm Sci, Reading, England
[7] Univ Hull, Energy & Environm Inst, Kingston Upon Hull, England
[8] Univ Durham, Dept Geog, Lower Mountjoy,South Rd, Durham DH1 3LE, England
[9] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, England
基金
英国自然环境研究理事会;
关键词
EARTH SYSTEM MODEL; PRECIPITATION; VARIABILITY; PERFORMANCE; RESOURCES; GAUGE; BASIN;
D O I
10.1038/s41597-023-02528-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events. The globally downscaled data are available at the Centre for Environmental Data Analysis (https://doi.org/10.5285/c107618f1db34801bb88a1e927b82317) for the historical (1981-2014) and future (2015-2100) periods at 0.25 degrees resolution and at daily time step across three Shared Socioeconomic Pathways (SSP2-4.5, SSP5-3.4-OS and SSP5-8.5). This new climate dataset will be useful for assessing future changes and variability in climate and for driving high-resolution impact assessment models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses
    Solomon Gebrechorkos
    Julian Leyland
    Louise Slater
    Michel Wortmann
    Philip J. Ashworth
    Georgina L. Bennett
    Richard Boothroyd
    Hannah Cloke
    Pauline Delorme
    Helen Griffith
    Richard Hardy
    Laurence Hawker
    Stuart McLelland
    Jeffrey Neal
    Andrew Nicholas
    Andrew J. Tatem
    Ellie Vahidi
    Daniel R. Parsons
    Stephen E. Darby
    [J]. Scientific Data, 10
  • [2] Impacts of Climate Change on Extreme Climate Indices in Turkiye Driven by High-Resolution Downscaled CMIP6 Climate Models
    Gumus, Berkin
    Oruc, Sertac
    Yucel, Ismail
    Yilmaz, Mustafa Tugrul
    [J]. SUSTAINABILITY, 2023, 15 (09)
  • [3] NASA Global Daily Downscaled Projections, CMIP6
    Thrasher, Bridget
    Wang, Weile
    Michaelis, Andrew
    Melton, Forrest
    Lee, Tsengdar
    Nemani, Ramakrishna
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [4] NASA Global Daily Downscaled Projections, CMIP6
    Bridget Thrasher
    Weile Wang
    Andrew Michaelis
    Forrest Melton
    Tsengdar Lee
    Ramakrishna Nemani
    [J]. Scientific Data, 9
  • [5] Global Projections of Storm Surges Using High-Resolution CMIP6 Climate Models
    Muis, Sanne
    Aerts, Jeroen C. J. H.
    Antolinez, Jose A. A.
    Dullaart, Job C.
    Duong, Trang Minh
    Erikson, Li
    Haarsma, Rein J.
    Apecechea, Maialen Irazoqui
    Mengel, Matthias
    Le Bars, Dewi
    ONeill, Andrea
    Ranasinghe, Roshanka
    Roberts, Malcolm J.
    Verlaan, Martin
    Ward, Philip J.
    Yan, Kun
    [J]. EARTHS FUTURE, 2023, 11 (09)
  • [6] Precipitation Projection in Cambodia Using Statistically Downscaled CMIP6 Models
    Duong, Seyhakreaksmey
    Song, Layheang
    Chhin, Rattana
    [J]. CLIMATE, 2023, 11 (12)
  • [7] Ranking of CMIP6 based High-resolution Global Climate Models for India using TOPSIS
    Thakur, Ritica
    Manekar, V.L.
    [J]. ISH Journal of Hydraulic Engineering, 2023, 29 (02) : 175 - 188
  • [8] High-resolution climate projection dataset based on CMIP6 for Peru and Ecuador: BASD-CMIP6-PE
    Carlos Antonio Fernandez-Palomino
    Fred F. Hattermann
    Valentina Krysanova
    Fiorella Vega-Jácome
    Christoph Menz
    Stephanie Gleixner
    Axel Bronstert
    [J]. Scientific Data, 11
  • [9] High-resolution climate projection dataset based on CMIP6 for Peru and Ecuador: BASD-CMIP6-PE
    Fernandez-Palomino, Carlos Antonio
    Hattermann, Fred F.
    Krysanova, Valentina
    Vega-Jacome, Fiorella
    Menz, Christoph
    Gleixner, Stephanie
    Bronstert, Axel
    [J]. SCIENTIFIC DATA, 2024, 11 (01)
  • [10] Extending the global high-resolution downscaled projections dataset to include CMIP6 projections at increased resolution coherent with the ERA5-Land reanalysis
    Noel, Thomas
    Loukos, Harilaos
    Defrance, Dimitri
    Vrac, Mathieu
    Levavasseur, Guillaume
    [J]. DATA IN BRIEF, 2022, 45