Counting independent sets in tricyclic graphs

被引:0
|
作者
Poureidi, Abolfazl [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Iran
关键词
Independent set; Tricyclic graph; Counting; Linear -time algorithm; MERRIFIELD-SIMMONS INDEX; CONNECTIVITY INDEX; HOSOYA INDEXES; NUMBER; TREES;
D O I
10.1016/j.dam.2023.01.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph of order n in the class of tricyclic graphs. In this paper, we propose an algorithm to compute the number of independent sets of G in O(n) time.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 50 条
  • [1] Counting independent sets in graphs
    Samotij, Wojciech
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2015, 48 : 5 - 18
  • [2] The number of independent sets of tricyclic graphs
    Zhu, Zhongxun
    Yu, Qigang
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1327 - 1334
  • [3] Counting independent sets in cocomparability graphs
    Dyer, Martin
    Mueller, Haiko
    [J]. INFORMATION PROCESSING LETTERS, 2019, 144 : 31 - 36
  • [4] On counting independent sets in sparse graphs
    Dyer, M
    Frieze, A
    Jerrum, M
    [J]. SIAM JOURNAL ON COMPUTING, 2002, 31 (05) : 1527 - 1541
  • [5] Counting independent sets in Riordan graphs
    Cheon, Gi-Sang
    Jung, Ji-Hwan
    Kang, Bumtle
    Kim, Hana
    Kim, Suh-Ryung
    Kitaev, Sergey
    Mojallal, Seyed Ahmad
    [J]. DISCRETE MATHEMATICS, 2020, 343 (11)
  • [6] Counting the number of independent sets in chordal graphs
    Okamoto, Yoshio
    Uno, Takeaki
    Uehara, Ryuhei
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (02) : 229 - 242
  • [7] Counting independent sets in graphs of hyperplane arrangements
    Guo, Nicholas
    Yue, Guangyi
    [J]. DISCRETE MATHEMATICS, 2020, 343 (03)
  • [8] Counting independent sets in unbalanced bipartite graphs
    Cannon, Sarah
    Perkins, Will
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1456 - 1466
  • [9] Counting Maximal Independent Sets in Subcubic Graphs
    Junosza-Szaniawski, Konstanty
    Tuczynski, Michal
    [J]. SOFSEM 2012: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2012, 7147 : 325 - 336
  • [10] Counting independent sets in unbalanced bipartite graphs
    Cannon, Sarah
    Perkins, Will
    [J]. PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1456 - 1466