A structural equation modeling approach using behavioral and neuroimaging markers in major depressive disorder

被引:1
|
作者
Bae, Eun Bit [1 ,2 ]
Han, Kyu-Man [2 ]
机构
[1] Korea Univ, Res Inst Med Bigdata Sci, Seoul, South Korea
[2] Korea Univ, Coll Med, Dept Psychiat, Anam Hosp, Seoul, South Korea
关键词
Childhood trauma; Diffusion tensor imaging; Magnetic resonance imaging; Major depressive disorder; Multimodal; Structural equation modeling; CHILDHOOD TRAUMA; FIT INDEXES; 1ST EPISODE; HISTORY; ABNORMALITIES; CONNECTIVITY; IMPULSIVITY; SEVERITY; EMOTION; VOLUME;
D O I
10.1016/j.jpsychires.2024.02.014
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Major depressive disorder (MDD) has consistently proven to be a multifactorial and highly comorbid disease. Despite recent depression-related research demonstrating causalities between MDD-related factors and a small number of variables, including brain structural changes, a high-statistical power analysis of the various factors is yet to be conducted. We retrospectively analyzed data from 155 participants (84 healthy controls and 71 patients with MDD). We used magnetic resonance imaging and diffusion tensor imaging data, scales assessing childhood trauma, depression severity, cognitive dysfunction, impulsivity, and suicidal ideation. To simultaneously evaluate the causalities between multivariable, we implemented two types of MDD-specified structural equation models (SEM), the behavioral and neurobehavioral models. Behavioral SEM showed significant results in the MDD group: Comparative Fit Index [CFI] = 1.000, Root Mean Square Error of Approximation [RMSEA]) = 0.000), with a strong correlation in the scales for childhood trauma, depression severity, suicidal ideation, impulsivity, and cognitive dysfunction. Based on behavioral SEM, we established neurobehavioral models showing the best-fit in MDD, especially including the right cingulate cortex, central to the posterior corpus callosum, right putamen, pallidum, whole brainstem, and ventral diencephalon, including the thalamus (CFI >0.96, RMSEA <0.05). Our MDD-specific model revealed that the limbic-associated regions are strongly connected with childhood trauma rather than depression severity, and that they independently affect suicidal ideation and cognitive dysfunction. Furthermore, cognitive dysfunction could affect impulsivity.
引用
收藏
页码:246 / 255
页数:10
相关论文
共 50 条
  • [1] Neuropsychological and neuroimaging markers for recurrence of major depressive disorder
    Ruhe, H. G.
    Figueroa, C.
    Mocking, R. J.
    Servaas, M. N.
    Cabral, J.
    Riese, H.
    Wichers, M.
    Deco, G.
    Kringelbach, M. L.
    Schene, A. H.
    [J]. EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S12 - S13
  • [2] Factors predicting the Major depressive disorder of engineering students in Bangladesh: a structural equation modeling approach
    Antora, Maharunnasha
    Islam, Md Kabirul
    Sattar, Abdus
    Sarker, Md. Fouad Hossain
    [J]. JOURNAL OF HUMAN BEHAVIOR IN THE SOCIAL ENVIRONMENT, 2024,
  • [3] Brain structural connectivity, anhedonia, and phenotypes of major depressive disorder: A structural equation model approach
    Pfarr, Julia-Katharina
    Brosch, Katharina
    Meller, Tina
    Ringwald, Kai Gustav
    Schmitt, Simon
    Stein, Frederike
    Meinert, Susanne
    Grotegerd, Dominik
    Thiel, Katharina
    Lemke, Hannah
    Winter, Alexandra
    Waltemate, Lena
    Hahn, Tim
    Opel, Nils
    Repple, Jonathan
    Bauer, Jochen
    Jansen, Andreas
    Dannlowski, Udo
    Krug, Axel
    Kircher, Tilo
    Nenadic, Igor
    [J]. HUMAN BRAIN MAPPING, 2021, 42 (15) : 5063 - 5074
  • [4] Neuroimaging biomarker of major depressive disorder
    Ichikawa, N.
    Okamoto, Y.
    Okada, G.
    Lisi, G.
    Yahata, N.
    Morimoto, J.
    Kawato, M.
    Matsuo, K.
    Yamagata, H.
    Watanabe, Y.
    Yamawaki, S.
    [J]. EUROPEAN PSYCHIATRY, 2016, 33 : S492 - S493
  • [5] The role of sexual abuse on functional neuroimaging markers associated with major depressive disorder
    Skokauskas, Norbert
    Carballedo, Angela
    Fagan, Andrew
    Frodl, Thomas
    [J]. WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY, 2015, 16 (07): : 513 - 520
  • [6] Predicting Suicide Attempts among Major Depressive Disorder Patients with Structural Neuroimaging: A Machine Learning Approach
    Fortaner-Uya, L.
    Monopoli, C.
    Calesella, F.
    Colombo, F.
    Bravi, B.
    Maggioni, E.
    Tassi, E.
    Poletti, S.
    Bollettini, I.
    Benedetti, F.
    Vai, B.
    [J]. EUROPEAN PSYCHIATRY, 2023, 66 : S1111 - S1112
  • [7] Neural biomarker of functional disability in major depressive disorder: A structural neuroimaging study
    Zhou, Rubai
    Chen, Jun
    Zhao, Guoqing
    Wang, Zuowei
    Peng, Daihui
    Xia, Weiping
    Mao, Ruizhi
    Xu, Jingjing
    Wang, Fan
    Zhang, Chen
    Wang, Yong
    Yuan, Chengmei
    Su, Yousong
    Huang, Jia
    Yang, Tao
    Wang, Chenglei
    Cui, Lvchun
    Wang, Jijun
    Palaniyappan, Lena
    Fang, Yiru
    [J]. PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2021, 111
  • [8] Neuroimaging Predictors of Clinical Response and Potential Markers of Treatment with Duloxetine in Major Depressive Disorder
    Fu, Cynthia
    Costafreda, Sergi
    Rasenick, Mark M.
    Donati, Robert
    Liu, Peng
    Marangell, Lauren
    [J]. NEUROPSYCHOPHARMACOLOGY, 2013, 38 : S344 - S344
  • [9] Structural Neuroimaging Studies in Major Depressive Disorder Meta-analysis and Comparison With Bipolar Disorder
    Kempton, Matthew J.
    Salvador, Zainab
    Munafo, Marcus R.
    Geddes, John R.
    Simmons, Andrew
    Frangou, Sophia
    Williams, Steven C. R.
    [J]. ARCHIVES OF GENERAL PSYCHIATRY, 2011, 68 (07) : 675 - 690
  • [10] Social anhedonia in major depressive disorder: a symptom-specific neuroimaging approach
    Enneking, Verena
    Kruessel, Pia
    Zaremba, Dario
    Dohm, Katharina
    Grotegerd, Dominik
    Foerster, Katharina
    Meinert, Susanne
    Buerger, Christian
    Dzvonyar, Fanni
    Leehr, Elisabeth J.
    Boehnlein, Joscha
    Repple, Jonathan
    Opel, Nils
    Winter, Nils R.
    Hahn, Tim
    Redlich, Ronny
    Dannlowski, Udo
    [J]. NEUROPSYCHOPHARMACOLOGY, 2019, 44 (05) : 883 - 889