SUFFICIENT CONDITION FOR COMPACTNESS OF THE partial derivative-NEUMANN OPERATOR USING THE LEVI CORE

被引:0
|
作者
Treuer, John n. [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
D O I
10.1090/proc/16649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a smooth, bounded pseudoconvex domain omega in Cn, to verify that Catlin's Property (P) holds for b omega, it suffices to check that it holds on the set of D'Angelo infinite type boundary points. In this note, we consider the support of the Levi core, SC(N), a subset of the infinite type points, and show that Property (P) holds for b omega if and only if it holds for SC(N). Consequently, if Property (P) holds on SC(N), then the partial differential -Neumann operator N1 is compact on omega.
引用
下载
收藏
页码:691 / 699
页数:9
相关论文
共 50 条