Photocatalytic Hydrogen Production from Pure Water Using a IEF-11/g-C3N4 S-Scheme Heterojunction

被引:16
|
作者
Qian, An [1 ]
Han, Xin [1 ]
Liu, Qiaona [1 ]
Fan, Minwei [1 ]
Ye, Lei [1 ]
Pu, Xin [1 ]
Chen, Ying [2 ]
Liu, Jichang [1 ,3 ]
Sun, Hui [1 ]
Zhao, Jigang [1 ]
Ling, Hao [1 ]
Wang, Rongjie [3 ]
Li, Jiangbing [3 ]
Jia, Xin [3 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, Shanghai 200237, Peoples R China
[2] SINOPEC Shanghai Engn Co Ltd SSEC, Shanghai 200120, Peoples R China
[3] Shihezi Univ, Sch Chem & Chem Engn, State Key Lab Incubat Base Green Proc Chem Engn, Shihezi 832003, Peoples R China
基金
中国国家自然科学基金;
关键词
MOF; g-C3N4; S-scheme heterojunction; Water splitting; Hydrogen production; CARBON NITRIDE; G-C3N4; CONSTRUCTION; NANOSHEETS; VACANCIES;
D O I
10.1002/cssc.202301538
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Construction of S-scheme heterojunction offers a promising way to enhance the photocatalytic performance of photocatalysts for converting solar energy into chemical energy. However, the photocatalytic H-2 production in pure water without sacrificial agents is still a challenge. Herein, the IEF-11 with the best photocatalytic H-2 production performance in MOFs and suitable band structure was selected and firstly constructed with g-C3N4 to obtain a S-scheme heterojunction for photocatalytic H-2 production from pure water. As a result, the novel IEF-11/g-C3N4 heterojunction photocatalysts exhibited significantly improved photocatalytic H-2 production performance in pure water without any sacrificial agent, with a rate of 576 mu mol/g/h, which is about 8 times than that of g-C3N4 and 23 times of IEF-11. The novel IEF-11/g-C3N4 photocatalysts also had a photocatalytic H-2 production rate of up to 92 mu mol/g/h under visible light and a good photocatalytic stability. The improved performance can be attributed to the efficient separation of photogenerated charge carriers, faster charge transfer efficiency and longer photogenerated carrier lifetimes, which comes from the forming of S-scheme heterojunction in the IEF-11/g-C3N4 photocatalyst. This work is a promising guideline for obtaining MOF-based or g-C3N4-based photocatalysts with great photocatalytic water splitting performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] g-C3N4/CoTiO3 S-scheme heterojunction for enhanced visible light hydrogen production through photocatalytic pure water splitting
    Meng, Aiyun
    Zhou, Shuang
    Wen, Da
    Han, Peigang
    Su, Yaorong
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (10) : 2548 - 2557
  • [2] Novel g-C3N4/g-C3N4 S-scheme isotype heterojunction for improved photocatalytic hydrogen generation
    Xu, Quanlong
    Ma, Dekun
    Yang, Shuibin
    Tian, Zhengfang
    Cheng, Bei
    Fan, Jiajie
    APPLIED SURFACE SCIENCE, 2019, 495
  • [3] Insights into the photocatalytic mechanism of S-scheme g-C3N4/ BiOBr heterojunction
    Liu, Fang
    Xu, Te-Te
    Jiang, Zhen-Yi
    INORGANIC CHEMISTRY COMMUNICATIONS, 2022, 143
  • [4] Metal free S-scheme heterojunction S-doped g-C3N4/g-C3N4 for enhanced photocatalytic water splitting
    Nagar, Om Prakash
    Barman, Tripti
    Marumoto, Kazuhiro
    Shimoi, Yukihiro
    Matsuishi, Kiyoto
    Chouhan, Neelu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 87 : 526 - 538
  • [5] DFT Study on S-Scheme g-C3N4/g-C3N4(P) Heterostructure Photocatalyst in Hydrogen Production Process by Photocatalytic Water Splitting
    Dai, Houmei
    Li, Xin
    Hou, Yanglai
    Wang, Dongliang
    Wei, Ran
    CATALYSIS LETTERS, 2025, 155 (02)
  • [6] Construction of the donor-acceptor type conjugated porous polymer/g-C3N4 S-scheme heterojunction for efficient photocatalytic hydrogen production
    Han, Yinfeng
    Liu, Miao
    Sun, Aihuan
    Zhao, Fei
    Zhao, Jinsheng
    Wang, Chang-An
    POLYMER CHEMISTRY, 2025,
  • [7] P-doped ultrathin g-C3N4 /In2S3 S-scheme heterojunction enhances photocatalytic hydrogen production and degradation of ofloxacin
    Li, Yongyi
    Yang, Huixing
    Li, Wei
    Shao, Zhigang
    Yu, Yongzhuo
    Yan, Huixiang
    Jiao, Shichao
    Lin, Di
    Zhang, Wenxu
    Lv, Chaoyu
    Huang, Yuxin
    PHYSICA B-CONDENSED MATTER, 2024, 685
  • [8] BiVO3/g-C3N4 S-scheme heterojunction nanocomposite photocatalyst for hydrogen production and amaranth dye removal
    Benaissa, Mohamed
    Abbas, Nadir
    Al Arni, Saleh
    Elboughdiri, Noureddine
    Moumen, Abdelkader
    Hamdy, Mohamed S.
    Abd-Rabboh, Hisham S. M.
    Galal, A. H.
    Al-Metwaly, M. Gad
    Ahmed, M. A.
    OPTICAL MATERIALS, 2021, 118
  • [9] In Situ Preparation of Mn0.2Cd0.8S-Diethylenetriamine/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic Hydrogen Production
    Zhao, Zhiwei
    Dai, Kai
    Zhang, Jinfeng
    Dawson, Graham
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (01)
  • [10] Boosting the water splitting and hydrogen production of S-scheme fabricated porous g-C3N4 modified with CuO
    Raza, Adil
    Haidry, Azhar Ali
    Amin, Talha
    Hussain, Abdul Ahad
    Shah, Syed Ali Mudassar Hassan
    Ahsan, Muhammad
    DIAMOND AND RELATED MATERIALS, 2024, 141