EXISTENCE OF A GROUND STATE SOLUTION FOR THE CHOQUARD EQUATION WITH NONPERIODIC POTENTIALS

被引:2
|
作者
Luo, Yuanyuan [1 ]
Gao, Dongmei [1 ]
Wang, Jun [1 ]
机构
[1] Jiangsu Univ, Inst Appl Syst Anal, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Choquard equation; ground state solution; critical points; variational methods; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATIONS; UNIQUENESS; CALCULUS; DECAY;
D O I
10.1007/s10473-023-0117-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Choquard equation -Delta u + V(x)u = b(x) integral(R3) vertical bar u(y)vertical bar(2)/vertical bar x - y vertical bar dyu, x is an element of R-3, where V(x) = V-1(x), b(x) = b(1)(x) for x(1) > 0 and V(x) = V-2(x), b(x) = b(2)(x) for x(1) < 0, and V-1, V-2, b(1) and b(2) are periodic in each coordinate direction. Under some suitable assumptions, we prove the existence of a ground state solution of the equation. Additionally, we find some sufficient conditions to guarantee the existence and nonexistence of a ground state solution of the equation.
引用
收藏
页码:303 / 323
页数:21
相关论文
共 50 条