COMPARISON OF QUANTUM NEURAL NETWORK ALGORITHMS FOR EARTH OBSERVATION DATA CLASSIFICATION

被引:1
|
作者
van Waveren, Matthijs [1 ]
Savinaud, Mickael [1 ]
Pasero, Guillaume [1 ]
Defonte, Veronique [1 ]
Brunet, Pierre-Marie [2 ]
Faucoz, Orphee [2 ]
Gawron, Piotr [3 ]
Gardas, Bartlomiej [4 ]
Puchala, Zbigniew [4 ]
Pawela, Lukasz [4 ]
机构
[1] CS Grp, 6 Rue Brindejonc Moulinais, F-31506 Toulouse, France
[2] CNES, 10 Ave Edouard Belin, F-31401 Toulouse, France
[3] PAS, Nicolaus Copernicus Astron Ctr, AstroCeNT, Rektorska 4, PL-00614 Warsaw, Poland
[4] PAS, Inst Theoret & Appl Informat, Baltycka 5, PL-44100 Gliwice, Poland
关键词
quantum machine learning; Earth observation; remote sensing; DEEP LEARNING BENCHMARK; LAND-USE; EUROSAT;
D O I
10.1109/IGARSS52108.2023.10281429
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This article describes a practical Earth Observation use case that would benefit from quantum computing. We analyze three quantum neural network algorithms. We implemented one of the algorithms on the EuroSAT dataset. We compare the algorithms with respect to complexity and degree of quantization. We believe that the algorithms we propose would be useful for the remote sensing community when quantum computing technologies become widely available.
引用
收藏
页码:780 / 783
页数:4
相关论文
共 50 条
  • [1] EARTH OBSERVATION DATA CLASSIFICATION WITH QUANTUM-CLASSICAL CONVOLUTIONAL NEURAL NETWORK
    Fan, Fan
    Shi, Yilei
    Zhu, Xiao Xiang
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 191 - 194
  • [2] EARTH OBSERVATION RETRIEVAL AND CLASSIFICATION ALGORITHMS FOR AGRICULTURE
    Mattia, Francesco
    Balenzano, Anna
    Satalino, Giuseppe
    Lovergine, Francesco
    Palmisano, Davide
    Nutini, Francesco
    Boschetti, Mirco
    Verza, Giorgia
    Rinaldi, Michele
    Ruggieri, Sergio
    Pio De Santis, Angelo
    Ciavarella, Francesco
    Paredes Gomez, Vanessa
    Nafria Garcia, David Alfonso
    Tapete, Deodato
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 1428 - 1431
  • [3] Quantum convolutional neural network for classical data classification
    Tak Hur
    Leeseok Kim
    Daniel K. Park
    [J]. Quantum Machine Intelligence, 2022, 4
  • [4] Quantum convolutional neural network for classical data classification
    Hur, Tak
    Kim, Leeseok
    Park, Daniel K.
    [J]. QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)
  • [5] Applications of neural network methods to the processing of earth observation satellite data
    Loyola, DG
    [J]. PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1704 - 1709
  • [6] Applications of neural network methods to the processing of Earth observation satellite data
    Loyola, Diego G. R.
    [J]. NEURAL NETWORKS, 2006, 19 (02) : 168 - 177
  • [7] Comparison with two classification algorithms of remote sensing image based on neural network
    Chen, YM
    Wan, YC
    Gong, JY
    Chen, J
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 906 - 911
  • [8] QUANTUM CONVOLUTIONAL CIRCUITS FOR EARTH OBSERVATION IMAGE CLASSIFICATION
    Chang, Su Yeon
    Le Saux, Bertrand
    Vallecorsa, Sofia
    Grossi, Michele
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 4907 - 4910
  • [9] NEURAL NETWORK LEARNING ALGORITHMS COMPARISON ON NUMERICAL PREDICTION OF REAL DATA
    Stencl, Michael
    St'astny, Jiri
    [J]. 16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MENDEL 2010, 2010, : 280 - +
  • [10] Application of fuzzy artificial neural network to observation data analysis of earth dam monitoring
    Chen, Jiguang
    Lu, Xuechang
    [J]. Shuili Xuebao/Journal of Hydraulic Engineering, 2000, (01): : 19 - 22