Parallel-in-time optimization of induction motors

被引:0
|
作者
Hahne, Jens [1 ]
Polenz, Bjoern [2 ]
Kulchytska-Ruchka, Iryna [3 ]
Friedhoff, Stephanie [1 ]
Ulbrich, Stefan [2 ]
Schoeps, Sebastian [3 ]
机构
[1] Berg Univ Wuppertal, Dept Math, Gaussstr 20, D-42119 Wuppertal, Germany
[2] Tech Univ Darmstadt, Dept Math, Dolivostr 15, D-64293 Darmstadt, Germany
[3] Tech Univ Darmstadt, Computat Electromagnet, Schlossgartenstr 8, D-64289 Darmstadt, Germany
基金
欧盟地平线“2020”;
关键词
Parallel-in-time; Optimization; Electric motors; PARAREAL; DISCRETIZATION;
D O I
10.1186/s13362-023-00134-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Parallel-in-time (PinT) methods were developed to accelerate time-domain solution of evolutionary problems using modern parallel computer architectures. In this paper we incorporate one of the efficient PinT approaches, in particular, the asynchronous truncated multigrid-reduction-in-time algorithm, into a bound constrained optimization procedure applied to an induction machine. Calculation of an optimal motor geometry with respect to its efficiency in the steady state is thus parallelized at each iteration of the optimization algorithm. As a result, a more efficient motor model is obtained about 11 times faster compared to optimization using the standard sequential time stepping.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Parallel-in-time optimization of induction motors
    Jens Hahne
    Björn Polenz
    Iryna Kulchytska-Ruchka
    Stephanie Friedhoff
    Stefan Ulbrich
    Sebastian Schöps
    Journal of Mathematics in Industry, 13
  • [2] AN EFFICIENT PARALLEL-IN-TIME METHOD FOR OPTIMIZATION WITH PARABOLIC PDEs
    Goetschel, Sebastian
    Minion, Michael L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06): : C603 - C626
  • [3] PARALLEL-IN-TIME MAGNUS INTEGRATORS
    Krull, B. T.
    Minion, M. L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : A2999 - A3020
  • [4] Parallel-in-time simulation of biofluids
    Liu, Weifan
    Rostami, Minghao W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 464
  • [5] Parallel-in-time adjoint-based optimization – application to unsteady incompressible flows
    Costanzo, S.
    Sayadi, T.
    Fosas de Pando, M.
    Schmid, P.J.
    Frey, P.
    Journal of Computational Physics, 2022, 471
  • [6] A non-intrusive parallel-in-time approach for simultaneous optimization with unsteady PDEs
    Guenther, S.
    Gauger, N. R.
    Schroder, J. B.
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (06): : 1306 - 1321
  • [7] Parallel-in-time integration of kinematic dynamos
    Clarke A.T.
    Davies C.J.
    Ruprecht D.
    Tobias S.M.
    Journal of Computational Physics: X, 2020, 7
  • [8] Parallel-in-Time Probabilistic Numerical ODE Solvers
    Bosch, Nathanael
    Corenflos, Adrien
    Obi, Fatemeh Yagho
    Tronarp, Filip
    Hennig, Philipp
    Sarkka, Simo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [9] Parallel-in-time adjoint-based optimization - application to unsteady incompressible flows
    Costanzo, S.
    Sayadi, T.
    de Pando, M. Fosas
    Schmid, P. J.
    Frey, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 471
  • [10] Parallel-in-time Parareal implementation using PETSc
    Caceres Silva, Juan Jose
    Baran, Benjamin
    Schaerer, Christian
    PROCEEDINGS OF THE 2014 XL LATIN AMERICAN COMPUTING CONFERENCE (CLEI), 2014,