Spectral-Spatial Feature Extraction for Hyperspectral Image Classification Using Enhanced Transformer with Large-Kernel Attention

被引:4
|
作者
Lu, Wen [1 ]
Wang, Xinyu [2 ]
Sun, Le [2 ,3 ]
Zheng, Yuhui [1 ]
机构
[1] Qinghai Normal Univ, Coll Comp, Xining 810000, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
CNN; Transformer; spectral-spatial feature; HSI; ANOMALY DETECTION; NETWORK;
D O I
10.3390/rs16010067
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the hyperspectral image (HSI) classification task, every HSI pixel is labeled as a specific land cover category. Although convolutional neural network (CNN)-based HSI classification methods have made significant progress in enhancing classification performance in recent years, they still have limitations in acquiring deep semantic features and face the challenges of escalating computational costs with increasing network depth. In contrast, the Transformer framework excels in expressing high-level semantic features. This study introduces a novel classification network by extracting spectral-spatial features with an enhanced Transformer with Large-Kernel Attention (ETLKA). Specifically, it utilizes distinct branches of three-dimensional and two-dimensional convolutional layers to extract more diverse shallow spectral-spatial features. Additionally, a Large-Kernel Attention mechanism is incorporated and applied before the Transformer encoder to enhance feature extraction, augment comprehension of input data, reduce the impact of redundant information, and enhance the model's robustness. Subsequently, the obtained features are input to the Transformer encoder module for feature representation and learning. Finally, a linear layer is employed to identify the first learnable token for sample label acquisition. Empirical validation confirms the outstanding classification performance of ETLKA, surpassing several advanced techniques currently in use. This research provides a robust and academically rigorous solution for HSI classification tasks, promising significant contributions in practical applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Spectral-Spatial Large Kernel Attention Network for Hyperspectral Image Classification
    Wu, Chunran
    Tong, Lei
    Zhou, Jun
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [2] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction
    Ye, Zhen
    Tan, Lian
    Bai, Lin
    2017 INTERNATIONAL WORKSHOP ON REMOTE SENSING WITH INTELLIGENT PROCESSING (RSIP 2017), 2017,
  • [5] SSATNet: Spectral-spatial attention transformer for hyperspectral corn image classification
    Wang, Bin
    Chen, Gongchao
    Wen, Juan
    Li, Linfang
    Jin, Songlin
    Li, Yan
    Zhou, Ling
    Zhang, Weidong
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [6] Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
    Dang, Lanxue
    Weng, Libo
    Dong, Weichuan
    Li, Shenshen
    Hou, Yane
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [7] Spectral-Spatial Attention Feature Extraction for Hyperspectral Image Classification Based on Generative Adversarial Network
    Liang, Hongbo
    Bao, Wenxing
    Shen, Xiangfei
    Zhang, Xiaowu
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10017 - 10032
  • [8] Discriminant Tensor Spectral-Spatial Feature Extraction for Hyperspectral Image Classification
    Zhong, Zisha
    Fan, Bin
    Duan, Jiangyong
    Wang, Lingfeng
    Ding, Kun
    Xiang, Shiming
    Pan, Chunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (05) : 1028 - 1032
  • [9] SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Quan, Yinghui
    Dong, Shuxian
    Feng, Wei
    Dauphin, Gabriel
    Zhao, Guoping
    Wang, Yong
    Xing, Mengdao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 485 - 488
  • [10] Discriminating Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Review
    Li, Ningyang
    Wang, Zhaohui
    Cheikh, Faouzi Alaya
    SENSORS, 2024, 24 (10)