Numerical Linear Algebra for the Two-Dimensional Bertozzi-Esedoglu-Gillette-Cahn-Hilliard Equation in Image Inpainting

被引:0
|
作者
Awad, Yahia [1 ]
Fakih, Hussein [1 ,2 ,3 ]
Alkhezi, Yousuf [4 ]
机构
[1] Lebanese Int Univ LIU, Dept Math & Phys, Bekaa Campus,POB 5, Al Khyara, Lebanon
[2] Int Univ Beirut BIU, Dept Math & Phys, Beirut Campus,POB 1001, Beirut, Lebanon
[3] Lebanese Univ, Dept Math, Khawarizmi Lab Math & Applicat, POB 1001, Beirut, Lebanon
[4] Publ Author Appl Educ & Training PAAET, Coll Basic Educ, Math Dept, POB 34053, Kuwait 70654, Kuwait
关键词
Cahn-Hilliard equation; image inpainting; finite difference method; numerical linear algebra; stability; steady state;
D O I
10.3390/math11244952
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a numerical linear algebra analytical study of some schemes for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation. Both 1D and 2D finite difference discretizations in space are proposed with semi-implicit and implicit discretizations on time. We prove that our proposed numerical solutions converge to continuous solutions.
引用
收藏
页数:31
相关论文
共 16 条