Densest packing of flexible polymers in 2D films

被引:3
|
作者
Pedrosa, Clara [1 ,2 ]
Martinez-Fernandez, Daniel [1 ,2 ]
Herranz, Miguel [1 ,2 ]
Foteinopoulou, Katerina [1 ,2 ]
Karayiannis, Nikos Ch [1 ,2 ]
Laso, Manuel [1 ,2 ]
机构
[1] Univ Politecn Madrid UPM, Inst Optoelect Syst & Microtechnol ISOM, C Jose Gutierrez Abascal 2, Madrid 28006, Spain
[2] Univ Politecn Madrid UPM, ETSII, C Jose Gutierrez Abascal 2, Madrid 28006, Spain
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 158卷 / 16期
关键词
RANDOM-CLOSE PACKING; HARD-SPHERE; CRYSTAL-NUCLEATION; GLASS-TRANSITION; CRYSTALLIZATION; MONODISPERSE; GENERATION; GEOMETRY; KEPLER; DISKS;
D O I
10.1063/5.0137115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
How dense objects, particles, atoms, and molecules can be packed is intimately related to the properties of the corresponding hosts and macrosystems. We present results from extensive Monte Carlo simulations on maximally compressed packings of linear, freely jointed chains of tangent hard spheres of uniform size in films whose thickness is equal to the monomer diameter. We demonstrate that fully flexible chains of hard spheres can be packed as efficiently as monomeric analogs, within a statistical tolerance of less than 1%. The resulting ordered polymer morphology corresponds to an almost perfect hexagonal triangular (TRI) crystal of the p6m wallpaper group, whose sites are occupied by the chain monomers. The Flory scaling exponent, which corresponds to the maximally dense polymer packing in 2D, has a value of ? = 0.62, which lies between the limits of 0.50 (compact and collapsed state) and 0.75 (self-avoiding random walk).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Packing of flexible 2D materials in vesicles
    Zou, Guijin
    Yi, Xin
    Zhu, Wenpeng
    Gao, Huajian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (22)
  • [2] Deformation of loops in 2D packing of flexible rods
    Sobral, T. A.
    de Holanda, V. H.
    Leal, F. C. B.
    Saraiva, T. T.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (25)
  • [3] Nanocomposites of Conducting Polymers and 2D Materials for Flexible Supercapacitors
    Zhu, Haipeng
    Xu, Ruiqi
    Wan, Tao
    Yuan, Wenxiong
    Shu, Kewei
    Boonprakob, Natkritta
    Zhao, Chen
    POLYMERS, 2024, 16 (06)
  • [4] Mojette Transform on Densest Lattices in 2D and 3D
    Ricordel, Vincent
    Normand, Nicolas
    Guedon, Jeanpierre
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, DGCI 2017, 2017, 10502 : 159 - 170
  • [5] DENSEST PACKING OF TRANSLATES OF THE UNION OF 2 CIRCLES
    TOTH, LF
    DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) : 307 - 314
  • [6] 2D polymers
    Schlueter, Dieter A.
    Sakamoto, Junji
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [7] 2D knapsack: Packing squares
    Lan, Yan
    Dosa, Gyoergy
    Han, Xin
    Zhou, Chenyang
    Benko, Attila
    THEORETICAL COMPUTER SCIENCE, 2013, 508 : 35 - 40
  • [8] STABILITY IN 2D RANDOM PACKING
    WILLIAMS, DEG
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (09): : L181 - L184
  • [9] 2D Knapsack: Packing Squares
    Chen, Min
    Dosa, Gyorgy
    Han, Xin
    Zhou, Chenyang
    Benko, Attila
    FRONTIERS IN ALGORITHMICS AND ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, (FAW-AAIM 2011), 2011, 6681 : 176 - 184
  • [10] On Packing 2D Irregular Shapes
    Bouganis, Alexandros
    Shanahan, Murray
    ECAI 2006, PROCEEDINGS, 2006, 141 : 853 - +