Does embryo categorisation by existing artificial intelligence, morphokinetic, or morphological embryo selection models correlate with blastocyst euploidy rates?

被引:0
|
作者
Kato, K. [1 ]
Ueno, S. [2 ]
Berntsen, J. [3 ]
Okimura, T. [2 ]
Kuroda, T. [1 ]
机构
[1] Kato Ladies Clin, Gynecol, Tokyo, Japan
[2] Kato Ladies Clin, IVF Lab, Tokyo, Japan
[3] Vitrolife AS, Data Sci, Aarhus, Denmark
关键词
D O I
暂无
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
O-240
引用
收藏
页数:2
相关论文
共 11 条
  • [1] Does embryo categorization by existing artificial intelligence, morphokinetic or morphological embryo selection models correlate with blastocyst euploidy rates?
    Kato, Keiichi
    Ueno, Satoshi
    Berntsen, Jorgen
    Kragh, Mikkel Fly
    Okimura, Tadashi
    Kuroda, Tomoko
    [J]. REPRODUCTIVE BIOMEDICINE ONLINE, 2023, 46 (02) : 274 - 281
  • [2] Generative artificial intelligence substantially enhances the accuracy of embryo selection models
    Cao, P.
    Derhaag, J.
    Coonen, E.
    Brunner, H.
    Acharya, G.
    Salumets, A.
    Esteki, M. Zamani
    [J]. HUMAN REPRODUCTION, 2024, 39 : I144 - I144
  • [3] Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF
    Diakiw, S. M.
    Hall, J. M. M.
    VerMilyea, M. D.
    Amin, J.
    Aizpurua, J.
    Giardini, L.
    Briones, Y. G.
    Lim, A. Y. X.
    Dakka, M. A.
    Nguyen, T., V
    Perugini, D.
    Perugini, M.
    [J]. HUMAN REPRODUCTION, 2022, 37 (08) : 1746 - 1759
  • [4] Interpretable artificial intelligence-assisted embryo selection improved single-blastocyst transfer outcomes: a prospective cohort study
    Wang, Shanshan
    Chen, Lei
    Sun, Haixiang
    [J]. REPRODUCTIVE BIOMEDICINE ONLINE, 2023, 47 (06)
  • [5] Using artificial intelligence platform coupled to an existing time system; external validation of an automatic embryo score to assist in selection
    Perez Albala, S.
    Bori, L.
    Aparicio-Ruiz, B.
    Gamiz, P.
    Beltran, D.
    Meseguer, M.
    Bellver, J.
    [J]. HUMAN REPRODUCTION, 2023, 38
  • [6] Calibration of artificial intelligence (AI) models is necessary to reflect actual implantation probabilities with image-based embryo selection
    Kragh, M. F.
    Lassen, J. T.
    Rimestad, J.
    Berntsen, J.
    [J]. HUMAN REPRODUCTION, 2021, 36 : 53 - 53
  • [7] Evolution of artificial intelligence-based embryo selection models: a massive external validation on 70,456 embryos
    Albert Rodriguez, C.
    Bori, L.
    Meseguer, F.
    Alegre, L.
    Remohi, J.
    Meseguer, M.
    [J]. HUMAN REPRODUCTION, 2023, 38
  • [8] Applying artificial intelligence for ploidy prediction: The concentration of IL-6 in spent culture medium, blastocyst morphological grade and embryo morphokinetics as variables under consideration
    Aparici Ruiz, B.
    Bori, L.
    Paya, E.
    Valera, M. A.
    Quinonero, A.
    Dominguez, F.
    Meseguer, M.
    [J]. HUMAN REPRODUCTION, 2021, 36 : 227 - 227
  • [9] Applying artificial intelligence for ploidy prediction: The concentration of IL-6 in spent culture medium, blastocyst morphological grade and embryo morphokinetics as variables under consideration
    Ruiz, B. Aparicio
    Bori, L.
    Paya, E.
    Valera, M. A.
    Quinonero, A.
    Dominguez, F.
    Meseguer, M.
    [J]. HUMAN REPRODUCTION, 2021, 36 : 92 - 92
  • [10] Performance of a commercial artificial intelligence software for embryo selection (Embryoscope/KIDScoreT) on predicting biopsied and non-biopsied blastocyst clinical pregnancy according to score subgroups
    Erberelli, R.
    Jacobs, C. K.
    Nicolielo, M.
    Motta, E. L.
    Alegretti, J. R.
    Lorenzon, A. R.
    [J]. HUMAN REPRODUCTION, 2021, 36 : 10 - 10