The Problem of Scaling in Exponential Random Graph Models

被引:23
|
作者
Duxbury, Scott W. [1 ]
机构
[1] Univ N Carolina, Sociol, Chapel Hill, NC 27515 USA
关键词
social network analysis; exponential random graph models; scaling; mediation; moderation; SOCIAL NETWORKS; UNOBSERVED HETEROGENEITY; LOGIT; PROBIT; FAMILY; COEFFICIENTS; REGRESSION; LIMITS; END;
D O I
10.1177/0049124120986178
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
This study shows that residual variation can cause problems related to scaling in exponential random graph models (ERGM). Residual variation is likely to exist when there are unmeasured variables in a model-even those uncorrelated with other predictors-or when the logistic form of the model is inappropriate. As a consequence, coefficients cannot be interpreted as effect sizes or compared between models and homophily coefficients, as well as other interaction coefficients, cannot be interpreted as substantive effects in most ERGM applications. We conduct a series of simulations considering the substantive impact of these issues, revealing that realistic levels of residual variation can have large consequences for ERGM inference. A flexible methodological framework is introduced to overcome these problems. Formal tests of mediation and moderation are also proposed. These methods are applied to revisit the relationship between selective mixing and triadic closure in a large AddHealth school friendship network. Extensions to other classes of statistical work models are discussed.
引用
收藏
页码:764 / 802
页数:39
相关论文
共 50 条
  • [1] Scaling bias in pooled exponential random graph models
    Duxbury, Scott W.
    Wertsching, Jenna
    [J]. SOCIAL NETWORKS, 2023, 74 : 19 - 30
  • [2] Exponential Random Graph Models
    Chatterjee, Sourav
    [J]. LARGE DEVIATIONS FOR RANDOM GRAPHS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLV - 2015, 2017, 2197 : 99 - 117
  • [3] Marginalized Exponential Random Graph Models
    Suesse, Thomas
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (04) : 883 - 900
  • [4] Diagnosing Multicollinearity in Exponential Random Graph Models
    Duxbury, Scott W.
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 2021, 50 (02) : 491 - 530
  • [5] Exponential random graph models for multilevel networks
    Wang, Peng
    Robins, Garry
    Pattison, Philippa
    Lazega, Emmanuel
    [J]. SOCIAL NETWORKS, 2013, 35 (01) : 96 - 115
  • [6] Bayesian inference for exponential random graph models
    Caimo, Alberto
    Friel, Nial
    [J]. SOCIAL NETWORKS, 2011, 33 (01) : 41 - 55
  • [7] Advances in exponential random graph (p*) models
    Robins, Garry
    Morris, Martina
    [J]. SOCIAL NETWORKS, 2007, 29 (02) : 169 - 172
  • [8] Exponential random graph models for little networks
    Yon, George G. Vega
    Slaughter, Andrew
    de la Haye, Kayla
    [J]. SOCIAL NETWORKS, 2021, 64 : 225 - 238
  • [9] Conditional Marginalization for Exponential Random Graph Models
    Snijders, Tom A. B.
    [J]. JOURNAL OF MATHEMATICAL SOCIOLOGY, 2010, 34 (04): : 239 - 252
  • [10] New specifications for exponential random graph models
    Snijders, Tom A. B.
    Pattison, Philippa E.
    Robins, Garry L.
    Handcock, Mark S.
    [J]. SOCIOLOGICAL METHODOLOGY 2006, VOL 36, 2006, 36 : 99 - 153