Composite Sorbents Based on Carbon Nanotubes and K2CO3 for CO2 Capture from Ambient Air

被引:0
|
作者
Derevschikov, V. S. [1 ]
Kuznetsov, V. L. [1 ]
Veselovskaya, J. V. [1 ]
Moseenkov, S. I. [1 ]
Yatsenko, D. A. [1 ,2 ]
Suknev, A. P. [1 ]
Leonova, A. A. [1 ]
Makolkin, N. V. [1 ]
Ruvinskiy, P. S. [1 ]
机构
[1] Boreskov Inst Catalysis SB RAS, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
关键词
SELF-REACTIVATION; ADSORPTION; POTASSIUM; OXIDATION;
D O I
10.1021/acs.iecr.3c02055
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
K2CO3-containing sorbents supported on carbon nanotubes (CNT) were prepared via one-pot extrusion molding and heat treatment. The porous CNTs were mixed with a water-isopropyl alcohol solution of potassium acetate (CH3COOK) and extruded by a plunger extruder. After drying in air, extrudates were calcined at 500 degrees C in argon to obtain the sorbents with a K2CO3 weight content in a range of 13.1-44.8 wt %. Samples were characterized using various techniques (scanning electron microscopy (SEM), X-ray diffraction (XRD), and low-temperature nitrogen adsorption) and were tested in the process of carbon dioxide capture from ambient air. The sorbent with 44.8 wt % K2CO3 demonstrated the promising dynamic CO2-sorption capacity (up to 8.9 wt %) under temperature-swing adsorption (TSA) cycle conditions. Taking into account that the sorbents need a relatively low temperature for regeneration (150 degrees C) while demonstrating high CO2-sorption capacity in the sequence of TSA cycles, these sorbents may be of interest for direct air capture applications.
引用
收藏
页码:20340 / 20351
页数:12
相关论文
共 50 条
  • [1] Direct CO2 capture from ambient air using K2CO3/Y2O3 composite sorbent
    Derevschikov, Vladimir S.
    Veselovskaya, Janna V.
    Kardash, Tatyana Yu
    Trubitsyn, Dmitry A.
    Okunev, Aleksey G.
    [J]. FUEL, 2014, 127 : 212 - 218
  • [2] Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent
    Veselovskaya, Janna V.
    Derevschikov, Vladimir S.
    Kardash, Tatyana Yu.
    Stonkus, Olga A.
    Trubitsina, Tatiana A.
    Okunev, Aleksey G.
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 17 : 332 - 340
  • [3] K2CO3-containing composite sorbents based on a ZrO2 aerogel for reversible CO2 capture from ambient air
    Veselovskaya, Janna V.
    Derevschikov, Vladimir S.
    Shalygin, Anton S.
    Yatsenko, Dmitry A.
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 310
  • [4] K2CO3 on porous supports for moisture-swing CO2 capture from ambient air
    Zheng, Shiqiang
    Cheng, Xinyue
    Zhou, Wenjia
    Wang, Tong
    Zhu, Liangliang
    Xiao, Hang
    Chen, Xi
    [J]. ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2024, 19 (03)
  • [5] Sorbents for the Direct Capture of CO2 from Ambient Air
    Shi, Xiaoyang
    Xiao, Hang
    Azarabadi, Habib
    Song, Juzheng
    Wu, Xiaolong
    Chen, Xi
    Lackner, Klaus S.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (18) : 6984 - 7006
  • [6] Parametrical Study on CO2 Capture from Ambient Air Using Hydrated K2CO3 Supported on an Activated Carbon Honeycomb
    Rodriguez-Mosqueda, Rafael
    Bramer, Eddy A.
    Roestenberg, Timo
    Brem, Gerrit
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (10) : 3628 - 3638
  • [7] TiO2-Doped K2CO3/Al2O3 Sorbents for CO2 Capture
    Dong, Wei
    Chen, Xiaoping
    Wu, Ye
    [J]. ENERGY & FUELS, 2014, 28 (05) : 3310 - 3316
  • [8] Reaction mechanism model of the CO2 absorption with K2CO3 sorbents
    [J]. Zhang, Zhonglin, 1600, Chinese Society for Electrical Engineering (34):
  • [9] Carbonation Behavior of K2CO3 with Different Microstructure Used as an Active Component of Dry Sorbents for CO2 Capture
    Zhao, Chuanwen
    Chen, Xiaoping
    Zhao, Changsui
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (23) : 12212 - 12216
  • [10] Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures
    Xiao, Gongkui
    Singh, Ranjeet
    Chaffee, Alan
    Webley, Paul
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (04) : 634 - 639