Diagnosis of rotating machinery based on improved convolutional neural networks with gray-level transformation
被引:0
|
作者:
Nan, Guofang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Nan, Guofang
[1
]
Wang, Jianwei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Wang, Jianwei
[1
]
Ding, Di
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
Ding, Di
[1
]
机构:
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
A fault diagnosis method for the rotating machinery based on improved Convolutional Neural Network (CNN) with Gray-Level Transformation (GLT) is proposed to increase the accuracy of the recognition adopting the multiple sensors. The Symmetrized Dot Pattern (SDP) in this method is applied to fuse the data of the multiple sensors, and the multi-color value method is adopted to increase the feature dimension. The grayscale and GLT are used to reduce the dimension of the SDP image. The SDP grayscale image is finally input to the CNN network for training recognition. The research results show that the diagnosis accuracy of the rolling bearing system based on the novel method is up to 98.6 %. Compared with the method without the multi-color value and GLT, the recognition accuracy of the proposed method is improved by 22.3 %, and the training time is reduced by about one third. The research work reveals that the developed method has the potential application value under the multi-sensor working conditions for the fault diagnosis.