On the mechanistic driving force for short fatigue crack path

被引:2
|
作者
Long, Daniel J. [1 ]
Dunne, Fionn P. E. [1 ]
机构
[1] Imperial Coll London, Royal Sch Mines, Dept Mat, London SW7 2AZ, England
关键词
CRYSTAL-PLASTICITY; CYCLIC DEFORMATION; GROWTH; PROPAGATION; BEHAVIOR; TIP;
D O I
10.1016/j.jmps.2023.105368
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The growth of fatigue cracks at the microstructural level is significant for many engineering industries. The multifarious nature of crack propagation at microstructure length scales necessitates the use of advanced modelling techniques to predict fatigue life accurately. A key contributor to this is the path of the crack, which also remains challenging to predict; the maximum slip criterion has been used widely in the literature but is not fully adequate. This paper tests the hypothesis that for short crystallographic cracks, there is some other factor responsible for guiding their extension on a particular plane. With this, using a crystal plasticity finite element modelling framework, two new energy-based methods are developed: a microstructure-sensitive maximum energy release rate criterion, and a maximum normal stored energy density criterion. Results demonstrate, for the two cases studied, both methods offer a significant improvement over the maximum slip criterion when applied to real microstructures. In particular, the maximum normal stored energy method gives closest agreement with experiments, while maximum energy release rate offers new insights into a mechanism for crack bifurcation.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] A FATIGUE CRACK DRIVING FORCE PARAMETER
    Xiong, Ying
    Gao, Zengliang
    Katsuta, Junichi
    Sakiyama, Takeshi
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2008, VOL 6, PT A AND B, 2009, : 165 - 170
  • [2] THE CRACK DRIVING FORCE FOR FATIGUE CRACK-PROPAGATION
    PIPPAN, R
    ENGINEERING FRACTURE MECHANICS, 1993, 44 (05) : 821 - 829
  • [3] Examination of fatigue crack driving force parameter
    Xiong, Y.
    Katsuta, J.
    Kawano, K.
    Sakiyama, T.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31 (09) : 754 - 765
  • [4] Experimental observations on the driving force in fatigue crack propagation
    Observaciones experimentales sobre la fuerza motriz en la propagación de grietas de fatiga
    Durán, J.A.R. (duran@vm.uff.br), 1600, Centro de Informacion Tecnologica (23):
  • [5] Ratchetting strain as a driving force for fatigue crack growth
    Tong, J.
    Zhao, L. G.
    Lin, B.
    INTERNATIONAL JOURNAL OF FATIGUE, 2013, 46 : 49 - 57
  • [6] Reflecting on the mechanical driving force of fatigue crack propagation
    Lang, M
    Marci, G
    FATIGUE AND FRACTURE MECHANICS: TWENTY-NINTH VOLUME, 1999, 1332 : 474 - 495
  • [7] A modification of UniGrow 2-parameter driving force model for short fatigue crack growth
    Bang, D. J.
    Ince, A.
    Tang, L. Q.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (01) : 45 - 60
  • [8] Mechanistic driving force for martensite decay in rolling contact fatigue
    Andric, Predrag
    Restrepo, Sebastian Echeverri
    Lai, Junbiao
    Venner, Cornelis H.
    Vegter, Erik
    TRIBOLOGY INTERNATIONAL, 2023, 184
  • [9] Crack shapes and crack driving force distributions for naturally growing fatigue cracks
    Escalero, Mikel
    Muniz-Calvente, Miguel
    Zabala, Haritz
    Urresti, Iker
    ENGINEERING FRACTURE MECHANICS, 2023, 277
  • [10] Local crack driving force analysis of a fatigue crack by a microstructural tracking method
    Qu, P.
    Toda, H.
    Zhang, H.
    Sakaguchi, Y.
    Qian, L.
    Kobayashi, M.
    Uesugi, K.
    SCRIPTA MATERIALIA, 2009, 61 (05) : 489 - 492