On the weak convergence of shift operators to zero on rearrangement-invariant spaces

被引:0
|
作者
Karlovych, Oleksiy [1 ]
Shargorodsky, Eugene [2 ,3 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Ctr Matemat & Aplicacoes, Dept Matemat, P-2829516 Caparica, Portugal
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Tech Univ Dresden, Fak Math, D-01062 Dresden, Germany
来源
REVISTA MATEMATICA COMPLUTENSE | 2023年 / 36卷 / 01期
关键词
Rearrangement-invariant Banach function space; Marcinkiewicz endpoint space; Non-separable Orlicz space; Shift operator; Weak convergence to zero; Fundamental function; Limit operator;
D O I
10.1007/s13163-022-00423-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {h(n)} be a sequence in R-d tending to infinity and let {T-hn} be the corresponding sequence of shift operators given by (T-hn f)(x) = f ( x - h(n)) for x is an element of R-d. We prove that {T-hn} converges weakly to the zero operator as n -> infinity on a separable rearrangement-invariant Banach function space X(R-d) if and only if its fundamental function phi(X) satisfies phi(X) (t)/t -> 0 as t -> infinity. On the other hand, we show that {T-hn} does not converge weakly to the zero operator as n -> infinity on all Marcinkiewicz endpoint spaces M-phi(R-d) and on all non-separable Orlicz spaces L-Phi(R-d). Finally, we prove that if {h(n)} is an arithmetic progression: h(n) = nh, n is an element of N with an arbitrary h is an element of R-d \{0}, then {T-nh} does not converge weakly to the zero operator on any non-separable rearrangement-invariant Banach function space X(R-d) as n -> infinity.
引用
收藏
页码:91 / 124
页数:34
相关论文
共 50 条