Nanophotonic quantum sensing with engineered spin-optic coupling

被引:3
|
作者
Kim, Laura [1 ,2 ]
Choi, Hyeongrak [1 ,3 ]
Trusheim, Matthew E. E. [1 ,4 ]
Wang, Hanfeng [1 ,3 ]
Englund, Dirk R. R. [1 ,3 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] US Army, Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
关键词
IR absorption readout; magnetic imaging; magnetometry; NV diamond; quantum diamond microscopy; quantum sensing; NITROGEN-VACANCY CENTER; EFFICIENT PHOTON COLLECTION; SINGLE-ELECTRON SPIN; MICROSCOPY; CENTERS; LIGHT;
D O I
10.1515/nanoph-2022-0682
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nitrogen vacancy centers in diamond provide a spin-based qubit system with long coherence time even at room temperature, making them suitable ambient-condition quantum sensors for quantities including electromagnetic fields, temperature, and rotation. The optically addressable level structures of NV spins allow transduction of spin information onto light-field intensity. The sub-optimal readout fidelity of conventional fluorescence measurement remains a significant drawback for room-temperature ensemble sensing. Here, we discuss nanophotonic interfaces that provide opportunities to achieve near-unity readout fidelity based on IR absorption via resonantly enhanced spin-optic coupling. Spin-coupled resonant nanophotonic devices are projected to particularly benefit applications that utilize micro- to nanoscale sensing volume and to outperform present methods in their volume-normalized sensitivity.
引用
收藏
页码:441 / 449
页数:9
相关论文
共 50 条
  • [1] Unambiguous nuclear spin detection using an engineered quantum sensing sequence
    Shu, Zijun
    Zhang, Zhendong
    Cao, Qingyun
    Yang, Pengcheng
    Plenio, Martin B.
    Mueller, Christoph
    Lang, Johannes
    Tomek, Nikolas
    Naydenov, Boris
    McGuinness, Liam P.
    Jelezko, Fedor
    Cai, Jianming
    [J]. PHYSICAL REVIEW A, 2017, 96 (05)
  • [2] Plasmon-exciton coupling for nanophotonic sensing on chip
    Dong, Jun
    Cao, Yi
    Han, Qingyan
    Wang, Yongkai
    Qi, Minghan
    Zhang, Wenwen
    Qiao, Lin
    Qi, Jianxia
    Gao, Wei
    [J]. OPTICS EXPRESS, 2020, 28 (14): : 20817 - 20829
  • [3] Spin coupling in engineered atomic structures
    Hirjibehedin, CF
    Lutz, CP
    Heinrich, AJ
    [J]. SCIENCE, 2006, 312 (5776) : 1021 - 1024
  • [4] Nanophotonic Quantum Interface for a Single Solid-state Spin
    Sun, Shuo
    Kim, Hyochul
    Solomon, Glenn S.
    Waks, Edo
    [J]. 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [5] Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip
    Xavier, Jolly
    Yu, Deshui
    Jones, Callum
    Zossimova, Ekaterina
    Vollmer, Frank
    [J]. NANOPHOTONICS, 2021, 10 (05) : 1387 - 1435
  • [6] Spin-engineered quantum dots
    Fleurov, V
    Ivanov, VA
    Peeters, FM
    Vagner, ID
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (04): : 361 - 365
  • [7] Nanophotonic resonator assisted photonic spin Hall enhancement for sensing application
    Goyal, Amit Kumar
    Divyanshu, Divyanshu
    Massoud, Yehia
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Nanophotonic resonator assisted photonic spin Hall enhancement for sensing application
    Amit Kumar Goyal
    Divyanshu Divyanshu
    Yehia Massoud
    [J]. Scientific Reports, 13
  • [9] Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer
    Coles, R. J.
    Price, D. M.
    Dixon, J. E.
    Royall, B.
    Clarke, E.
    Kok, P.
    Skolnick, M. S.
    Fox, A. M.
    Makhonin, M. N.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Hybrid Quantum Nanophotonic Devices for Coupling to Rare-Earth Ions
    Miyazono, Evan
    Hartz, Alex
    Zhong, Tian
    Faraon, Andrei
    [J]. 2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,