Precision Oncology Core Data Model to Support Clinical Genomics Decision Making

被引:0
|
作者
Botsis, Taxiarchis [1 ]
Murray, Joseph C. [1 ]
Ghanem, Paola [2 ]
Balan, Archana [1 ]
Kernagis, Alexander [1 ]
Hardart, Kent [1 ]
He, Ting [1 ]
Spiker, Jonathan [1 ]
Kreimeyer, Kory [1 ]
Tao, Jessica [1 ]
Baras, Alexander S. [3 ]
Yegnasubramanian, Srinivasan [1 ]
Canzoniero, Jenna [1 ]
Anagnostou, Valsamo [1 ]
机构
[1] Johns Hopkins Univ, Dept Oncol, Sidney Kimmel Comprehens Canc Ctr, Sch Med, Baltimore, MD USA
[2] Johns Hopkins Univ, Dept Internal Med, Sch Med, Baltimore, MD USA
[3] Johns Hopkins Univ, Dept Pathol, Sch Med, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD USA
来源
关键词
INTEROPERABILITY;
D O I
10.1200/CCI.22.00108
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSE Precision oncology mandates developing standardized common data models (CDMs) to facilitate analyses and enable clinical decision making. Expert-opinion-based precision oncology initiatives are epitomized in Molecular Tumor Boards (MTBs), which process large volumes of clinical-genomic data to match genotypes with molecularly guided therapies. METHODS We used the Johns Hopkins University MTB as a use case and developed a precision oncology core data model (Precision-DM) to capture key clinical-genomic data elements. We leveraged existing CDMs, building upon the Minimal Common Oncology Data Elements model (mCODE). Our model was defined as a set of profiles with multiple data elements, focusing on next-generation sequencing and variant annotations. Most elements were mapped to terminologies or code sets and the Fast Healthcare Interoperability Resources (FHIR). We subsequently compared our Precision-DM with existing CDMs, including the National Cancer Institute's Genomic Data Commons (NCI GDC), mCODE, OSIRIS, the clinical Genome Data Model (cGDM), and the genomic CDM (gCDM). RESULTS Precision-DM contained 16 profiles and 355 data elements. 39% of the elements derived values from selected terminologies or code sets, and 61% were mapped to FHIR. Although we used most elements contained in mCODE, we significantly expanded the profiles to include genomic annotations, resulting in a partial overlap of 50.7% between our core model and mCODE. Limited overlap was noted between Precision-DM and OSIRIS (33.2%), NCI GDC (21.4%), cGDM (9.3%), and gCDM (7.9%). Precision-DM covered most of the mCODE elements (87.7%), with less coverage for OSIRIS (35.8%), NCI GDC (11%), cGDM (26%) and gCDM (33.3%). CONCLUSION Precision-DM supports clinical-genomic data standardization to support the MTB use case and may allow for harmonized data pulls across health care systems, academic institutions, and community medical centers. (c) 2023 by American Society of Clinical Oncology
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Precision Oncology Core Data Model to Support Clinical Genomics Decision Making
    Botsis, Taxiarchis
    Murray, Joseph C.
    Ghanem, Paola
    Balan, Archana
    Kernagis, Alexander
    Hardart, Kent
    He, Ting
    Spiker, Jonathan
    Kreimeyer, Kory
    Tao, Jessica
    Baras, Alexander S.
    Yegnasubramanian, Srinivasan
    Canzoniero, Jenna
    Anagnostou, Valsamo
    [J]. JCO CLINICAL CANCER INFORMATICS, 2023, 7
  • [2] Clinical Use of Precision Oncology Decision Support
    Johnson, Amber
    Khotskaya, Yekaterina B.
    Brusco, Lauren
    Zeng, Jia
    Holla, Vijaykumar
    Bailey, Ann M.
    Litzenburger, Beate C.
    Sanchez, Nora S.
    Abu Shufean, Md
    Piha-Paul, Sarina
    Subbiah, Vivek
    Hong, David
    Routbort, Mark
    Broaddus, Russell
    Shaw, Kenna R. Mills
    Mills, Gordon B.
    Mendelsohn, John
    Meric-Bernstam, Funda
    [J]. JCO PRECISION ONCOLOGY, 2017, 1 : 1 - 12
  • [3] Precision Oncology Program - Integration of Real World Data in Clinical Decision Making
    Boos, L. A.
    Gut, G.
    Miglino, N.
    Fabregas-Ibanez, L.
    Schmid, M. P.
    Zoche, M.
    Aguilera, D.
    Arnold, F.
    Dorig, C.
    Fruchtenicht, C.
    Rizzo, S.
    Huntley, M.
    Bosshard, K.
    Bodmer, M.
    Glinz, D.
    Kaczmarek, L.
    Chitale, N.
    Lozano, O.
    Nowak, M.
    Gosztonyi, B.
    Rahmani-Khajouei, S.
    Rahimzadeh, P.
    Wicki, A.
    [J]. SWISS MEDICAL WEEKLY, 2023, 153 : 53S - 53S
  • [4] Support systems to guide clinical decision-making in precision oncology: The Cancer Core Europe Molecular Tumor Board Portal
    David Tamborero
    Rodrigo Dienstmann
    Maan Haj Rachid
    Jorrit Boekel
    Richard Baird
    Irene Braña
    Luigi De Petris
    Jeffrey Yachnin
    Christophe Massard
    Frans L. Opdam
    Richard Schlenk
    Claudio Vernieri
    Elena Garralda
    Michele Masucci
    Xenia Villalobos
    Elena Chavarria
    Fabien Calvo
    Stefan Fröhling
    Alexander Eggermont
    Giovanni Apolone
    Emile E. Voest
    Carlos Caldas
    Josep Tabernero
    Ingemar Ernberg
    Jordi Rodon
    Janne Lehtiö
    [J]. Nature Medicine, 2020, 26 : 992 - 994
  • [5] Support systems to guide clinical decision-making in precision oncology: The Cancer Core Europe Molecular Tumor Board Portal
    Tamborero, David
    Dienstmann, Rodrigo
    Rachid, Maan Haj
    Boekel, Jorrit
    Baird, Richard
    Brana, Irene
    De Petris, Luigi
    Yachnin, Jeffrey
    Massard, Christophe
    Opdam, Frans L.
    Schlenk, Richard
    Vernieri, Claudio
    Garralda, Elena
    Masucci, Michele
    Villalobos, Xenia
    Chavarria, Elena
    Calvo, Fabien
    Frohling, Stefan
    Eggermont, Alexander
    Apolone, Giovanni
    Voest, Emile E.
    Caldas, Carlos
    Tabernero, Josep
    Ernberg, Ingemar
    Rodon, Jordi
    Lehtio, Janne
    [J]. NATURE MEDICINE, 2020, 26 (07) : 992 - 994
  • [6] Clinical Genome Data Model (cGDM) provides Interactive Clinical Decision Support for Precision Medicine
    Hyo Jung Kim
    Hyeong Joon Kim
    Yoomi Park
    Woo Seung Lee
    Younggyun Lim
    Ju Han Kim
    [J]. Scientific Reports, 10
  • [7] Clinical Genome Data Model (cGDM) provides Interactive Clinical Decision Support for Precision Medicine
    Kim, Hyo Jung
    Kim, Hyeong Joon
    Park, Yoomi
    Lee, Woo Seung
    Lim, Younggyun
    Kim, Ju Han
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Decision making in precision oncology: an issue of mutational contextuality
    Dey, Nandini
    De, Pradip
    [J]. AMERICAN JOURNAL OF CANCER RESEARCH, 2019, 9 (03): : 628 - 629
  • [9] Decision-making as discovery: Vetting clinical research in a leading precision oncology service
    Cambrosio, Alberto
    Campbell, Jonah
    Drilon, Alexander E.
    Keating, Peter
    Polk, Jess B.
    [J]. SOCIOLOGY OF HEALTH & ILLNESS, 2024, 46 (03) : 495 - 513
  • [10] Patient-derived organoids for precision oncology: a platform to facilitate clinical decision making
    Swati Chitrangi
    Pooja Vaity
    Aishwarya Jamdar
    Shweta Bhatt
    [J]. BMC Cancer, 23