On Deligne?s conjecture for symmetric fourth L-functions of Hilbert modular forms

被引:2
|
作者
Chen, Shih-Yu [1 ,2 ]
机构
[1] Inst Math, Acad Sinica, ROC, 6F, Astron-Math Bldg, 1, Sec 4, Roosevelt Rd, Taipei 10617, Taiwan
[2] Kyoto Univ, Dept Math, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 6068502, Japan
关键词
Deligne?s conjecture; Symmetric power L -functions; ARCHIMEDEAN ZETA INTEGRALS; SPECIAL VALUES; DISTINGUISHED REPRESENTATIONS; AUTOMORPHIC-FORMS; SQUARE; ALGEBRAICITY; EXTERIOR; PRODUCTS; GL(N);
D O I
10.1016/j.aim.2023.108860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an automorphic analogue of Deligne's conjecture for symmetric fourth L-functions of Hilbert modular forms. We extend the result of Morimoto [41] based on generalization and refinement of the results of Grobner and Lin [18] to cohomological irreducible essentially conjugate self-dual cuspidal automorphic representations of GL2 and GL3 over CM-fields.
引用
收藏
页数:79
相关论文
共 50 条