Advancing Brain-Machine Interfaces: High Data Rate Battery-Free Implants

被引:0
|
作者
Hasanvand, Aminolah [1 ]
Khaleghi, Ali [1 ]
Beguet, Cyril [2 ]
Wanda, Paul [2 ]
Balasingham, Ilangko [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Elect Syst IES, Trondheim, Norway
[2] Blackrock Microsyst Europe GmbH, Hannover, Germany
基金
欧盟地平线“2020”;
关键词
Implantable wireless brain-machine interfaces; multielectrode arrays; near-field wireless charging; wireless radio frequency backscatter; EFFICIENT;
D O I
10.1109/IMBIOC56839.2023.10305091
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Implantable wireless brain-machine interfaces (BMI) encounter significant challenges in miniaturization, power consumption, and high data volume. While systems utilizing high resolution microelectrode arrays offer precision brain readout and/or stimulation, achieving high-rate wireless connectivity (32-128 Mbps) consumes excessive power, unsuitable for long-term use with implant batteries. This paper addresses wireless connectivity and power challenges by employing radio frequency backscatter and near-field wireless charging. This approach eliminates transceiver electronics in the implantable, reducing implant power consumption by offloading complexity to off-body reader electronics. It enables wireless powering of implantable neural recording and stimulation chips through magnetic coupling, enabling a fully implantable brain-machine interface. We present preliminary test results for this design scenario, demonstrating the feasibility of our approach.
引用
收藏
页码:70 / 72
页数:3
相关论文
共 50 条
  • [1] Miniaturized Antenna for High Data Rate Implantable Brain-Machine Interfaces
    Abbas, Naeem
    Shah, Syed Ahson Ali
    Basir, Abdul
    Bashir, Zubair
    Akram, Adeel
    Yoo, Hyoungsuk
    IEEE ACCESS, 2022, 10 : 66018 - 66027
  • [2] Editorial: New approaches in Brain-Machine Interfaces with implants
    Salari, Vahid
    O'Connor, Rodney
    Rodrigues, Serafim
    Oblak, Daniel
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [3] Brain-machine interfaces
    Pissaloux, Edwige
    BIOFUTUR, 2011, (322) : 50 - 53
  • [4] Brain-machine interfaces
    Contreras-Vidal, J. L.
    Prasad, S.
    Kilicarslan, A.
    Bhagat, N.
    Bhattacharyya, R.
    Uhlenbrock, R. M.
    Payton, D. W.
    Panova, J. S.
    Marcus, J. D.
    Panova, T. B.
    Leuthardt, E. C.
    Love, L. J.
    Coker, R.
    Moran, D. W.
    Nuyujukian, P.
    Kao, J. C.
    Shenoy, K., V
    Schiff, N. D.
    Kao, J. C.
    Nuyujukian, P.
    Churchland, M. M.
    Cunningham, J. P.
    Shenoy, K., V
    NATURE BIOTECHNOLOGY, 2019, 37 (09) : 1001 - 1001
  • [5] Fabrication and Assembly Techniques for Distributed Battery-Free Brain Implants
    Khalifa, Adam
    Nasrollahpour, Mehdi
    Nezaratizadeh, Ali
    Sha, Xiao
    Stanacevic, Milutin
    Sun, Nian X.
    Cash, Sydney
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [6] Are brain-machine interfaces the real experience machine? Exploring the libertarian risks of brain-machine interfaces
    Mateus, Jorge
    AI & SOCIETY, 2025,
  • [7] Brain-machine interfaces: an overview
    Lebedev, Mikhail
    TRANSLATIONAL NEUROSCIENCE, 2014, 5 (01) : 99 - 110
  • [8] Advancing brain-machine interfaces: moving beyond linear state space models
    Rouse, Adam G.
    Schieber, Marc H.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2015, 9 : 1 - 13
  • [9] A CMOS Distributed Sensor System for High-Density Wireless Neural Implants for Brain-Machine Interfaces
    Leung, Vincent W.
    Lee, Jihun
    Li, Siwei
    Yu, Siyuan
    Kilfoyle, Chester
    Larson, Lawrence
    Nurmikko, Arto
    Laiwalla, Farah
    ESSCIRC 2018 - IEEE 44TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2018, : 230 - 233
  • [10] Manufacturing, Assembling and Packaging of Miniaturized Implants for Neural Prostheses and Brain-Machine Interfaces
    Stieglitz, Thomas
    SMART SENSORS, ACTUATORS, AND MEMS IV, 2009, 7362