Synapsin condensation controls synaptic vesicle sequestering and dynamics

被引:22
|
作者
Hoffmann, Christian [1 ]
Rentsch, Jakob [2 ]
Tsunoyama, Taka A. [3 ]
Chhabra, Akshita [1 ]
Aguilar Perez, Gerard [1 ]
Chowdhury, Rajdeep [4 ,5 ,6 ]
Trnka, Franziska [1 ]
Korobeinikov, Aleksandr A. [1 ]
Shaib, Ali H. [4 ,5 ,6 ]
Ganzella, Marcelo [7 ]
Giannone, Gregory [8 ]
Rizzoli, Silvio O. [4 ,5 ,6 ]
Kusumi, Akihiro [3 ]
Ewers, Helge [2 ]
Milovanovic, Dragomir [1 ]
机构
[1] German Ctr Neurodegenerat Dis DZNE, Lab Mol Neurosci, D-10117 Berlin, Germany
[2] Free Univ Berlin, Inst Chem & Biochem, D-14195 Berlin, Germany
[3] Grad Univ OIST, Okinawa Inst Sci & Technol, Membrane Cooperat Unit, Onna, Okinawa 9040495, Japan
[4] Univ Med Ctr Gottingen, Inst Neuro & Sensory Physiol, D-37073 Gottingen, Germany
[5] Biostruct Imaging Neurodegenerat BIN Ctr, Gottingen, Germany
[6] Excellence Cluster Multiscale Bioimaging, D-37073 Gottingen, Germany
[7] Max Planck Inst Multidisciplinary Sci, Dept Neurobiol, D-37077 Gottingen, Germany
[8] Univ Bordeaux, Interdisciplinary Inst Neurosci, UMR 5297, F-33000 Bordeaux, France
基金
欧洲研究理事会;
关键词
LOW-DENSITY; PROTEINS; PHASE; POOL; LOCALIZATION; TRANSMITTER; MOLECULES; DIFFUSION; TRACKING; MOBILITY;
D O I
10.1038/s41467-023-42372-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo. Brain functioning critically relies on coordinated neurotransmitter release by synaptic vesicles (SVs) at synapses. This study shows that synapsin/SVs condensation is sufficient to guarantee reliable confinement and motility of SVs at synapses in vivo.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Synapsin condensation controls synaptic vesicle sequestering and dynamics
    Christian Hoffmann
    Jakob Rentsch
    Taka A. Tsunoyama
    Akshita Chhabra
    Gerard Aguilar Perez
    Rajdeep Chowdhury
    Franziska Trnka
    Aleksandr A. Korobeinikov
    Ali H. Shaib
    Marcelo Ganzella
    Gregory Giannone
    Silvio O. Rizzoli
    Akihiro Kusumi
    Helge Ewers
    Dragomir Milovanovic
    Nature Communications, 14
  • [2] Synapsin I controls synaptic vesicle dynamics in neuronal growth cones
    Bonanomi, D
    Menegon, A
    Albertinazzi, C
    Miccio, A
    Ferrari, G
    Benfenati, F
    Valtorta, F
    MOLECULAR BIOLOGY OF THE CELL, 2004, 15 : 95A - 95A
  • [3] Phosphorylation of synapsin I by cAMP-dependent protein kinase controls synaptic vesicle dynamics in developing neurons
    Bonanomi, D
    Menegon, A
    Miccio, A
    Ferrari, G
    Corradi, A
    Kao, HT
    Benfenati, F
    Valtorta, F
    JOURNAL OF NEUROSCIENCE, 2005, 25 (32): : 7299 - 7308
  • [4] Synapsin Isoforms and Synaptic Vesicle Trafficking
    Song, Sang-Ho
    Augustine, George J.
    MOLECULES AND CELLS, 2015, 38 (11) : 936 - 940
  • [5] Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis
    Leal-Ortiz, Sergio
    Waites, Clarissa L.
    Terry-Lorenzo, Ryan
    Zamorano, Pedro
    Gundelfinger, Eckart D.
    Garner, Craig C.
    JOURNAL OF CELL BIOLOGY, 2008, 181 (05): : 831 - 846
  • [6] A role for synapsin tetramerization in synaptic vesicle clustering
    Song, Sang-Ho
    Augustine, George J.
    JOURNAL OF PHYSIOLOGY-LONDON, 2024,
  • [7] Functional Role of ATP Binding to Synapsin I In Synaptic Vesicle Trafficking and Release Dynamics
    Orlando, Marta
    Lignani, Gabriele
    Maragliano, Luca
    Fassio, Anna
    Onofri, Franco
    Baldelli, Pietro
    Giovedi, Silvia
    Benfenati, Fabio
    JOURNAL OF NEUROSCIENCE, 2014, 34 (44): : 14752 - 14768
  • [8] Colocalization of synapsin and actin during synaptic vesicle recycling
    Bloom, O
    Evergren, E
    Tomilin, N
    Kjaerulff, O
    Löw, P
    Brodin, L
    Pieribone, VA
    Greengard, P
    Shupliakov, O
    JOURNAL OF CELL BIOLOGY, 2003, 161 (04): : 737 - 747
  • [9] ESSENTIAL FUNCTIONS OF SYNAPSIN-I AND SYNAPSIN-II IN SYNAPTIC VESICLE REGULATION
    ROSAHL, TW
    SPILLANE, D
    MISSLER, M
    HERZ, J
    SELIG, DK
    WOLFF, JR
    HAMMER, RE
    MALENKA, RC
    SUDHOF, TC
    NATURE, 1995, 375 (6531) : 488 - 493
  • [10] Vesicle condensation induced by synapsin: condensate size, geometry, and vesicle shape deformations
    Alfken, Jette
    Neuhaus, Charlotte
    Major, Andras
    Taskina, Alyona
    Hoffmann, Christian
    Ganzella, Marcelo
    Petrovic, Arsen
    Zwicker, David
    Fernandez-Busnadiego, Ruben
    Jahn, Reinhard
    Milovanovic, Dragomir
    Salditt, Tim
    EUROPEAN PHYSICAL JOURNAL E, 2024, 47 (01):