Deriving Dualities in Pointfree Topology from Priestley Duality

被引:1
|
作者
Bezhanishvili, G. [1 ]
Melzer, S. [1 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
Pointfree topology; Spatial frame; Continuous frame; Stably compact frame; Compact regular frame; Sober space; Locally compact space; Stably compact space; Compact Hausdorff space; Priestley duality; COVER;
D O I
10.1007/s10485-023-09739-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are several prominent duality results in pointfree topology. Hofmann-Lawson duality establishes that the category of continuous frames is dually equivalent to the category of locally compact sober spaces. This restricts to a dual equivalence between the categories of stably continuous frames and stably locally compact spaces, which further restricts to Isbell duality between the categories of compact regular frames and compact Hausdorff spaces. We show how to derive these dualities from Priestley duality for distributive lattices, thus shedding new light on these classic results.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Deriving Dualities in Pointfree Topology from Priestley Duality
    G. Bezhanishvili
    S. Melzer
    Applied Categorical Structures, 2023, 31
  • [2] Applications of Priestley duality in transferring optimal dualities
    Davey B.A.
    Haviar M.
    Studia Logica, 2004, 78 (1-2) : 213 - 236
  • [3] Remainders in pointfree topology
    Ferreira, Maria Joao
    Picado, Jorge
    Pinto, Sandra Marques
    TOPOLOGY AND ITS APPLICATIONS, 2018, 245 : 21 - 45
  • [4] OZ IN POINTFREE TOPOLOGY
    Banaschewski, Bernhard
    Dube, Themba
    Gilmour, Christopher
    Walters-Wayland, Joanne
    QUAESTIONES MATHEMATICAE, 2009, 32 (02) : 215 - 227
  • [5] Restricted Priestley Dualities and Discriminator Varieties
    B. A. Davey
    A. Gair
    Studia Logica, 2017, 105 : 843 - 872
  • [6] Restricted Priestley Dualities and Discriminator Varieties
    Davey, B. A.
    Gair, A.
    STUDIA LOGICA, 2017, 105 (04) : 843 - 872
  • [7] RECENT RESULTS IN POINTFREE TOPOLOGY
    BANASCHEWSKI, B
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1992, 659 : 29 - 41
  • [8] Localic Priestley duality
    Townsend, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 116 (1-3) : 323 - 335
  • [9] Priestley Duality for Bilattices
    A. Jung
    U. Rivieccio
    Studia Logica, 2012, 100 : 223 - 252
  • [10] Priestley Duality for Bilattices
    Jung, A.
    Rivieccio, U.
    STUDIA LOGICA, 2012, 100 (1-2) : 223 - 252