Co-pyrolysis of sewage sludge and poplar sawdust under controlled low-oxygen conditions: Biochar properties and heavy metals behavior

被引:20
|
作者
Yu, Fan [1 ]
Lv, Hongbing [2 ]
Fan, Lian [2 ]
Chen, Lishuai [2 ]
Hu, Yanjun [1 ]
Wang, Xu [1 ]
Guo, Qianqian [1 ]
Cui, Xiaoqiang [3 ]
Zhou, Nan [1 ]
Jiao, Long [1 ]
机构
[1] Zhejiang Univ Technol, Inst Thermal & Power Engn, Liuhe Rd 288, Hangzhou 310023, Peoples R China
[2] Zhejiang Zheneng Xingyuan Energy Saving Technol Co, Hangzhou 310011, Peoples R China
[3] Tianjin Univ, Sch Environm Sci & Engn, Tianjin Key Lab Biomass Waste Utilizat, Tianjin 300072, Peoples R China
关键词
Sewage sludge; Pyrolysis; Low-oxygen; Biochar; Heavy metals; HYDROTHERMAL CARBONIZATION; TEMPERATURE; GAS; FRACTIONS; SORPTION; RISK;
D O I
10.1016/j.jaap.2023.105868
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Biochar production by pyrolysis of sewage sludge (SS) is one of effective ways to realize resource recovery and harmless treatment of SS. However, biochar prepared by direct pyrolysis of SS has a lower specific surface area and higher heavy metal content. This study was aimed to evaluate the effect of low-oxygen and addition of poplar sawdust (PS) on sludge-derived biochar. The properties of biochar and heavy metals behavior were systematically characterized. The presence of 10% O2 during SS pyrolysis had a significant effect on the specific surface area of the pyrolytic biochar and the chemical species of heavy metals. In comparison with the pyrolytic biochar under N2 atmosphere, the yield of co-pyrolytic biochar from 10% O2 decreased by 6.7% at 350 degrees C and 8.3% at 650 degrees C, while it had the highest fixed carbon content of 19.6%. Moreover, the addition of PS also increased the specific surface area of pyrolysis biochar to 26.8 m2 g- 1 at 650 degrees C. With the increase of pyrolysis temperature, heavy metals including Zn, Cr, and Cu in SS were transformed from the exchangeable and reducible states to oxidizable states and residue states. Especially, the presence of 10% O2 can also promote the formation of oxidizable states of heavy metals in biochar. Based on risk assessment code analysis, the ecotoxicity of heavy metals in biochar with the presence of O2 was evidently lowered. Therefore, a low oxygen atmosphere and copyrolysis of sludge and biomass could be effective ways to improve the quality of sludge-based biochar.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge
    Yang, Yan-Qin
    Cui, Min-Hua
    Ren, Yi-Gang
    Guo, Jian-Chao
    Zheng, Zhi-Yong
    Liu, He
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2020, 104 (04) : 489 - 496
  • [2] Towards Understanding the Mechanism of Heavy Metals Immobilization in Biochar Derived from Co-pyrolysis of Sawdust and Sewage Sludge
    Yan-Qin Yang
    Min-Hua Cui
    Yi-Gang Ren
    Jian-Chao Guo
    Zhi-Yong Zheng
    He Liu
    Bulletin of Environmental Contamination and Toxicology, 2020, 104 : 489 - 496
  • [3] Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar
    Wang, Gang
    Yu, Guang-Wei
    Xie, Sheng-Yu
    Jiang, Ru-Qing
    Wang, Yin
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2019, 47 (05): : 611 - 620
  • [4] Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar
    Huang, Hua-jun (huanghuajun2004@126.com), 1600, Elsevier B.V., Netherlands (125):
  • [5] Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar
    Huang, Hua-jun
    Yang, Ting
    Lai, Fa-ying
    Wu, Guo-qiang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2017, 125 : 61 - 68
  • [6] Co-pyrolysis technology for enhancing the functionality of sewage sludge biochar and immobilizing heavy metals
    Fan, Zeyu
    Zhou, Xian
    Peng, Ziling
    Wan, Sha
    Gao, Zhuo Fan
    Deng, Shanshan
    Tong, Luling
    Han, Wei
    Chen, Xia
    CHEMOSPHERE, 2023, 317
  • [7] Effects of maize stovers and sewage sludge co-pyrolysis on characteristics and heavy metals in biochar
    玉米秸秆与污泥混合热解对生物碳特性及重金属的影响
    Deng, Ying (dengy@hxxy.edu.cn), 1600, Chinese Society of Agricultural Engineering (36): : 239 - 245
  • [8] Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate
    Liu, Liheng
    Huang, Lin
    Huang, Rong
    Lin, Hua
    Wang, Dunqiu
    Journal of Hazardous Materials, 2021, 403
  • [9] Co-pyrolysis of sewage sludge and biomass for stabilizing heavy metals and reducing biochar toxicity: A review
    Mohamed, Badr A.
    Ruan, Roger
    Bilal, Muhammad
    Khan, Nadeem A.
    Awasthi, Mukesh Kumar
    Amer, Mariam A.
    Leng, Lijian
    Hamouda, Mohamed A.
    Vo, Dai-Viet Nguyen
    Li, Jian
    ENVIRONMENTAL CHEMISTRY LETTERS, 2023, 21 (02) : 1231 - 1250
  • [10] Immobilization of heavy metals in biochar derived from co-pyrolysis of sewage sludge and calcium sulfate
    Liu, Liheng
    Huang, Lin
    Huang, Rong
    Lin, Hua
    Wang, Dunqiu
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 403