The Dynamics of Transformation of Lithospheric Mantle Rocks Beneath the Siberian Craton

被引:0
|
作者
Perepechko, Yury [1 ]
Sharapov, Victor [1 ]
Tomilenko, Anatoly [1 ]
Chudnenko, Konstantin [2 ]
Sorokin, Konstantin [1 ]
Ashchepkov, Igor [1 ]
机构
[1] Russian Acad Sci, Sobolev Inst Geol & Mineral, Siberian Branch, Novosibirsk 630090, Russia
[2] Russian Acad Sci, Vernadsky Inst Geochem, Siberian Branch, Irkutsk 664033, Russia
基金
俄罗斯基础研究基金会;
关键词
Siberian craton; petrology; morphotectonics; heat-mass transfer; mathematical modeling; UDACHNAYA KIMBERLITE PIPE; MATHEMATICAL-MODELS; FLUID INCLUSIONS; REDOX CONDITIONS; DIAMOND; METASOMATISM; XENOLITHS; GARNET; MELT; CONSEQUENCES;
D O I
10.3390/min13030423
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The problem of heat-mass transfer in the permeable areas above the asthenosphere zones was numerically studied based on an examination of the inclusion content in the minerals (olivine and clinopyroxenes) of igneous and metamorphic rocks of the lithospheric mantle and the Earth's crust; evaluations of thermodynamic conditions of the inclusion formation; and experimental modeling of the influence of hot reduced gases on rocks in the mantle beneath the Siberian craton. The flow of fluids of a certain composition from the upper-mantle magma chambers leads to the formation of zonal metasomatic columns in the ultrabasic mantle lithosphere in the permeable zones of deep faults (starting from the lithosphere base at 6-7 GPa). When petrogenic components enter from the magma pocket, depleted ultrabasic lithospheric mantle rocks change to substrates, which can be considered as the deep counterparts of crustal rodingites. Other fluid compositions result in strong calcination and pronounced salinization of the metasomatized substrates or an increase in the garnet content of the primary ultrabasic matrix. A region of alkaline rocks forms above these areas, which changes to pyroxenes, amphiboles, and biotites. The heat-mass transfer modeling for the two-velocity hydrodynamic model shows that gas-fluid and melt percolation lead to an increase in the thermal front velocity under convective heating and a pressure drop in flow. It is also shown that grospidites are considered to be eclogites, are found in the permeable zones of the lithospheric mantle columns serving as conduits for the melt/fluids and represent the products of the carbonated metasomatic columns. The carbonization caused by proto-kimberlite melts may essentially decrease the diamond grade of kimberlites due to carbon oxidation.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] The physicochemical dynamics of carbonatization of the rocks of lithospheric mantle beneath the Siberian Platform
    Sharapov, V. N.
    Chudnenko, K. V.
    Tomilenko, A. A.
    RUSSIAN GEOLOGY AND GEOPHYSICS, 2015, 56 (05) : 696 - 708
  • [2] Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study
    Ashchepkov, Igor V.
    Pokhilenko, Nikolai P.
    Vladykin, Nikolai V.
    Logvinova, Alla M.
    Afanasiev, Valentin P.
    Pokhilenko, Lyudmila N.
    Kuligin, Sergei S.
    Malygina, Elena V.
    Alymova, Natalia A.
    Kostrovitsky, Sergey I.
    Rotman, Anatolii Y.
    Mityukhin, Sergey I.
    Karpenko, Mikhail A.
    Stegnitsky, Yuri B.
    Khemelnikova, Olga S.
    TECTONOPHYSICS, 2010, 485 (1-4) : 17 - 41
  • [3] Layering of the lithospheric mantle beneath the Siberian Craton: Modeling using thermobarometry of mantle xenolith and xenocrysts
    Ashchepkov, I. V.
    Vladykin, N. N.
    Ntaflos, T.
    Kostrovitsky, S. I.
    Prokopiev, S. A.
    Downes, H.
    Smelov, A. P.
    Agashev, A. M.
    Logvinova, A. M.
    Kuligin, S. S.
    Tychkov, N. S.
    Salikhov, R. F.
    Stegnitsky, Yu. B.
    Alymova, N. V.
    Vavilov, M. A.
    Minin, V. A.
    Babushkina, S. A.
    Ovchinnikov, Yu. I.
    Karpenko, M. A.
    Tolstov, A. V.
    Shmarov, G. P.
    TECTONOPHYSICS, 2014, 634 : 55 - 75
  • [4] New petrographic, major and trace element data on lithospheric mantle beneath central Siberian craton
    Doucet, L. -S.
    Ionov, D. A.
    Ashchepkov, I.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A302 - A302
  • [5] Regularities of mantle structure beneath Siberian craton
    Ashchepkov, IV
    Vladykin, NV
    Rotman, A
    Pokhilenko, NP
    Logvinova, AM
    Kuchkin, AM
    Palessky, SS
    Saprykin, AI
    Anoshin, GN
    Khemel'Nikova, O
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (10) : A438 - A438
  • [6] The evolution of refertilized lithospheric mantle beneath the northeastern Siberian craton: Links between mantle metasomatism, thermal state and diamond potential
    Skuzovatov, Sergei
    Shatsky, Vladislav S.
    Ragozin, Alexey L.
    Smelov, Alexander P.
    GEOSCIENCE FRONTIERS, 2022, 13 (06)
  • [7] The evolution of refertilized lithospheric mantle beneath the northeastern Siberian craton:Links between mantle metasomatism,thermal state and diamond potential
    Sergei Skuzovatov
    Vladislav S.Shatsky
    Alexey L.Ragozin
    Alexander P.Smelov
    Geoscience Frontiers, 2022, 13 (06) : 158 - 174
  • [8] The evolution of refertilized lithospheric mantle beneath the northeastern Siberian craton:Links between mantle metasomatism,thermal state and diamond potential
    Sergei Skuzovatov
    Vladislav SShatsky
    Alexey LRagozin
    Alexander PSmelov
    Geoscience Frontiers, 2022, (06) : 158 - 174
  • [9] The evolution of lithospheric mantle beneath the Kalahari Craton and its margins
    Griffin, WL
    O'Reilly, SY
    Natapov, LM
    Ryan, CG
    LITHOS, 2003, 71 (2-4) : 215 - 241
  • [10] Redox Evolution of the Lithospheric Mantle beneath the North China Craton
    Wang Jian
    Song Yue
    Hattori, Keiko
    ACTA GEOLOGICA SINICA-ENGLISH EDITION, 2016, 90 (04) : 1539 - 1540