Optical efficiency and convective heat loss of a cylindrical-hemispherical receiver used in parabolic dish concentrator

被引:0
|
作者
Kumar, Kolli Harish [1 ,2 ]
Karmakar, Malay K. [1 ]
Daabo, Ahmed M. [3 ]
Mondal, Bittagopal [1 ]
机构
[1] CSIR Cent Mech Engn Res Inst, Durgapur 713209, W Bengal, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Univ Mosul, Mech Engn Dept, Nineveh, Iraq
关键词
Solar energy; Cylindrical-hemispherical receiver; Optical efficiency; Convective heat loss; Sol-trace; Artificial neural network; CAVITY RECEIVER; NATURAL-CONVECTION; OPTIMIZATION; PERFORMANCE; COLLECTOR; DESIGN;
D O I
10.1007/s10973-023-12814-w
中图分类号
O414.1 [热力学];
学科分类号
摘要
The efficiency of the parabolic dish concentrator system is primarily affected by the geometrical parameters of the receiver. To understand these effects, optical and thermal analysis of a cylindrical-hemispherical cavity receiver is carried out in this paper. The optical efficiency of the receiver is evaluated for varying receiver height (h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}) from 0.135 to 0.165 m and coil tube diameter (dt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d}_{{\text{t}}}$$\end{document}) from 0.009 to 0.012 m using the Monte Carlo Ray Tracing Method, and it is found that the optical efficiency is achieved to be 92.87% for the receiver having tube diameter of 0.012 m with height of 0.145 m. Thermal analysis of the receiver is also carried out to estimate the heat loss in both natural and forced convection modes using numerical modeling. The heat losses are analyzed for varying factors like receiver orientation (gamma = 0o to 90o), wind velocity (V = 0 to 6 m s-1) and receiver temperature (T = 600 and 700 K) with head-on wind and back-on wind directions. The results illustrate that the heat loss from the receiver is high at gamma = 60o for head-on wind direction; and for back-on wind direction, this is high at gamma = 90o. On the other hand, the minimum heat loss is observed at gamma = 30o for both directions of wind. Artificial Neural Network is also applied to estimate the convective heat loss from the receiver. Error matrices like average percentage error (APE), maximum correlation coefficient (R), and root mean square error (RMSE) are used to evaluate the model performance considering input variables like receiver aperture diameter (D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{D}}$$\end{document}), receiver orientation (gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upgamma$$\end{document}), surface temperature of the receiver (Ts\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{{\text{s}}}$$\end{document}), and wind velocity (V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}). Also, the predicted values of ANN have been compared with the results obtained from numerical analysis to evaluate the error percentage.
引用
收藏
页码:2481 / 2497
页数:17
相关论文
共 32 条
  • [1] Optical efficiency and convective heat loss of a cylindrical-hemispherical receiver used in parabolic dish concentrator
    Kolli Harish Kumar
    Malay K. Karmakar
    Ahmed M. Daabo
    Bittagopal Mondal
    [J]. Journal of Thermal Analysis and Calorimetry, 2024, 149 : 2481 - 2497
  • [2] Optical modeling of a cylindrical-hemispherical receiver for parabolic dish concentrator
    Kumar, Kolli Harish
    Reddy, Desireddy Shashidhar
    Karmakar, Malay
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (22) : 63121 - 63134
  • [3] Optical modeling of a cylindrical-hemispherical receiver for parabolic dish concentrator
    Kolli Harish Kumar
    Desireddy Shashidhar Reddy
    Malay Karmakar
    [J]. Environmental Science and Pollution Research, 2023, 30 : 63121 - 63134
  • [4] Correction to: Optical modeling of a cylindrical‑hemispherical receiver for parabolic dish concentrator
    Kolli Harish Kumar
    Desireddy Shashidhar Reddy
    Malay Karmakar
    [J]. Environmental Science and Pollution Research, 2023, 30 : 63135 - 63135
  • [5] Wind-induced convective heat loss of cylindrical receiver considering the effect of dish concentrator
    Xiao, Lan
    He, Song
    Shen, Zu-Guo
    Wu, Shuang-Ying
    Chen, Zhi-Li
    [J]. RENEWABLE ENERGY, 2022, 182 : 900 - 912
  • [6] Numerical analysis of convective heat loss from a cylindrical-hemispherical receiver using a glass cover and an air curtain
    Kumar, Kolli Harish
    Karmakar, Malay
    Mondal, Bittagopal
    [J]. HEAT TRANSFER, 2024, 53 (04) : 2039 - 2061
  • [7] Modeling of convective heat loss from a cavity receiver coupled to a dish concentrator
    Uzair, Muhammad
    Anderson, Timothy N.
    Nates, Roy J.
    [J]. SOLAR ENERGY, 2018, 176 : 496 - 505
  • [8] The impact of the parabolic dish concentrator on the wind induced heat loss from its receiver
    Uzair, M.
    Anderson, T. N.
    Nates, R. J.
    [J]. SOLAR ENERGY, 2017, 151 : 95 - 101
  • [9] Optical analysis and optimization of parabolic dish solar concentrator with a cavity receiver
    Li, Huairui
    Huang, Weidong
    Huang, Farong
    Hu, Peng
    Chen, Zeshao
    [J]. SOLAR ENERGY, 2013, 92 : 288 - 297
  • [10] HEAT LOSS ANALYSIS OF THREE COIL CYLINDRICAL SOLAR CAVITY RECEIVER OF PARABOLIC DISH FOR PROCESS HEAT
    Sinha, Ramola
    Gulhane, Nitin P.
    Taler, Jan
    Oclon, Pawel
    [J]. THERMAL SCIENCE, 2019, 23 (Supplement 4): : S1301 - S1310