Enhancing Dynamic Parameter Adaptation in the Bird Swarm Algorithm Using General Type-2 Fuzzy Analysis and Mathematical Functions

被引:2
|
作者
Miramontes, Ivette [1 ]
Melin, Patricia [1 ]
机构
[1] Tijuana Inst Technol, Div Grad Studies & Res, TecNM, Calzada Tecnol S-N, Tijuana 22414, BC, Mexico
关键词
General Type-2 fuzzy system; optimization; bio-inspired algorithm; Bird Swarm Algorithm; INTERVAL TYPE-2; PERFORMANCE; SYSTEMS; NETWORK;
D O I
10.3390/axioms12090834
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The pursuit of continuous improvement across diverse processes presents a pressing challenge. Precision in manufacturing, efficient delivery route planning, and accurate diagnostics are imperative, prompting the exploration of innovative solutions. Nature-inspired algorithms offer a pathway for enhancing these processes. In this study, we address this challenge by dynamically adapting parameters in the Bird Swarm Algorithm using General Type-2 Fuzzy Systems, encompassing a range of rules and membership functions. Two complex case studies validate the effectiveness of our approach. The first evaluates Congress of Evolutionary Competition 2017 functions, while the second tackles the intricacies of Congress of Evolutionary Competition 2019 functions. Our methodology achieves an 97% improvement for Congress of Evolutionary Competition 2017 functions and a significant 70% enhancement for Congress of Evolutionary Competition 2019 functions. Notably, our results are benchmarked against the original method. Crucially, rigorous statistical analysis underscores the significant advancements facilitated by our proposed method. The comparison demonstrates clear and statistically significant improvements over the original approach. This study proves the marked impact of integrating General Type-2 Fuzzy Systems into the Bird Swarm Algorithm, presenting a promising avenue for addressing intricate optimization challenges in diverse domains.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Particle swarm optimization with dynamic parameter adaptation using interval type-2 fuzzy logic for benchmark mathematical functions
    Olivas, Frumen
    Valdez, Fevrier
    Castillo, Oscar
    2013 WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2013, : 36 - 40
  • [2] Interval Type-2 Fuzzy Approach for Dynamic Parameter Adaptation in the Bird Swarm Algorithm for the Optimization of Fuzzy Medical Classifier
    Miramontes, Ivette
    Melin, Patricia
    AXIOMS, 2022, 11 (09)
  • [3] Bat Algorithm with Parameter Adaptation using Interval Type-2 Fuzzy Logic for Benchmark Mathematical Functions
    Perez, Jonathan
    Valdez, Fevrier
    Castillo, Oscar
    Roeva, Olympia
    2016 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2016, : 120 - 127
  • [4] An Interval Type-2 Fuzzy Logic Approach for Dynamic Parameter Adaptation in a Whale Optimization Algorithm Applied to Mathematical Functions
    Amador-Angulo, Leticia
    Castillo, Oscar
    AXIOMS, 2024, 13 (01)
  • [5] Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic
    Olivas, Frumen
    Valdez, Fevrier
    Castillo, Oscar
    Melin, Patricia
    SOFT COMPUTING, 2016, 20 (03) : 1057 - 1070
  • [6] Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic
    Frumen Olivas
    Fevrier Valdez
    Oscar Castillo
    Patricia Melin
    Soft Computing, 2016, 20 : 1057 - 1070
  • [7] Fuzzy dynamic parameter adaptation in the bird swarm algorithm for neural network optimization
    Patricia Melin
    Ivette Miramontes
    Oscar Carvajal
    German Prado-Arechiga
    Soft Computing, 2022, 26 : 9497 - 9514
  • [8] Fuzzy dynamic parameter adaptation in the bird swarm algorithm for neural network optimization
    Melin, Patricia
    Miramontes, Ivette
    Carvajal, Oscar
    Prado-Arechiga, German
    SOFT COMPUTING, 2022, 26 (18) : 9497 - 9514
  • [9] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Perez, Jonathan
    Valdez, Fevrier
    Castillo, Oscar
    Melin, Patricia
    Gonzalez, Claudia
    Martinez, Gabriela
    SOFT COMPUTING, 2017, 21 (03) : 667 - 685
  • [10] Interval type-2 fuzzy logic for dynamic parameter adaptation in the bat algorithm
    Jonathan Perez
    Fevrier Valdez
    Oscar Castillo
    Patricia Melin
    Claudia Gonzalez
    Gabriela Martinez
    Soft Computing, 2017, 21 : 667 - 685