Mapping the Morphology of DNA on Carbon Nanotubes in Solution Using X-ray Scattering Interferometry

被引:5
|
作者
Rosenberg, Daniel J. [1 ,2 ,3 ]
Cunningham, Francis J. [4 ]
Hubbard, Joshua D. [4 ]
Goh, Natalie S. [4 ]
Wang, Jeffrey Wei-Ting [4 ]
Nishitani, Shoichi [4 ]
Hayman, Emily B. [2 ,4 ]
Hura, Greg L. [2 ,5 ]
Landry, Markita P. [4 ,6 ,7 ,8 ]
Pinals, Rebecca L. [9 ,10 ]
机构
[1] Univ Calif Berkeley, Grad Grp Biophys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA
[3] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[5] Univ Calif Santa Cruz, Chem & Biochem Dept, Santa Cruz, CA 95064 USA
[6] Univ Calif Berkeley, Calif Inst Quantitat Biosci, QB3, Berkeley, CA 94720 USA
[7] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[8] Innovat Genom Inst IGI, Berkeley, CA 94720 USA
[9] MIT, Picower Inst Learning & Memory, Cambridge, MA 02139 USA
[10] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 欧盟地平线“2020”;
关键词
GOLD NANOPARTICLES; LIGHT-SCATTERING; PROTEIN; CONFORMATIONS; SAXS; RECOGNITION; DEPENDENCE; ENSEMBLE; BINDING;
D O I
10.1021/jacs.3c09549
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-walled carbon nanotubes (SWCNTs) with adsorbed single-stranded DNA (ssDNA) are applied as sensors to investigate biological systems, with potential applications ranging from clinical diagnostics to agricultural biotechnology. Unique ssDNA sequences render SWCNTs selectively responsive to target analytes such as (GT)(n)-SWCNTs recognizing the neuromodulator, dopamine. It remains unclear how the ssDNA conformation on the SWCNT surface contributes to functionality, as observations have been limited to computational models or experiments under dehydrated conditions that differ substantially from the aqueous biological environments in which the nanosensors are applied. We demonstrate a direct mode of measuring in-solution ssDNA geometries on SWCNTs via X-ray scattering interferometry (XSI), which leverages the interference pattern produced by AuNP tags conjugated to ssDNA on the SWCNT surface. We employ XSI to quantify distinct surface-adsorbed morphologies for two (GT)(n) ssDNA oligomer lengths (n = 6, 15) that are used on SWCNTs in the context of dopamine sensing and measure the ssDNA conformational changes as a function of ionic strength and during dopamine interaction. We show that the shorter oligomer, (GT)(6), adopts a more periodically ordered ring structure along the SWCNT axis (inter-ssDNA distance of 8.6 +/- 0.3 nm), compared to the longer (GT)(15) oligomer (most probable 5 '-to-5 ' distance of 14.3 +/- 1.1 nm). During molecular recognition, XSI reveals that dopamine elicits simultaneous axial elongation and radial constriction of adsorbed ssDNA on the SWCNT surface. Our approach using XSI to probe solution-phase morphologies of polymer-functionalized SWCNTs can be applied to yield insights into sensing mechanisms and inform future design strategies for nanoparticle-based sensors.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 50 条
  • [1] SOLUTION TO THE PHASE PROBLEM USING X-RAY INTERFEROMETRY
    HUTTON, JT
    TRAMMELL, GT
    HANNON, JP
    PHYSICAL REVIEW B, 1985, 31 (10): : 6420 - 6423
  • [2] X-ray generation using carbon nanotubes
    Parmee, Richard J.
    Collins, Clare M.
    Milne, William I.
    Cole, Matthew T.
    NANO CONVERGENCE, 2015, 2
  • [3] X-ray generation using carbon nanotubes
    Richard J Parmee
    Clare M Collins
    William I Milne
    Matthew T Cole
    Nano Convergence, 2
  • [4] Probing Surface Morphology using X-ray Grating Interferometry
    Yashiro, Wataru
    Ikeda, Susumu
    Wada, Yasuo
    Totsu, Kentaro
    Suzuki, Yoshio
    Takeuchi, Akihisa
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [5] Probing Surface Morphology using X-ray Grating Interferometry
    Wataru Yashiro
    Susumu Ikeda
    Yasuo Wada
    Kentaro Totsu
    Yoshio Suzuki
    Akihisa Takeuchi
    Scientific Reports, 9
  • [6] X-ray scattering applied to the analysis of carbon nanotubes, polymers and nanocomposites
    Garcia-Gutierrez, M. C.
    Nogales, A.
    Hernandez, J. J.
    Rueda, D. R.
    Ezquerra, T. A.
    OPTICA PURA Y APLICADA, 2007, 40 (02): : 195 - 205
  • [7] Studying viruses using solution X-ray scattering
    Khaykelson D.
    Raviv U.
    Biophysical Reviews, 2020, 12 (1) : 41 - 48
  • [8] X-ray propagation in carbon nanotubes
    Childs, P. A.
    Ong, S. Y.
    Herbert, D. C.
    Milne, W. I.
    Teo, K. B. K.
    Shang, N. G.
    Gangloff, L.
    Smith, A. D.
    O'Neill, A. G.
    INTERNATIONAL CONFERENCE ON CHARGED AND NEUTRAL PARTICLES CHANNELING PHENOMENA II - CHANNELING 2006, 2007, 6634
  • [9] DNA origami dimensions and structure measured by solution X-ray scattering
    Baker, M. A.
    Tuckwell, A. J.
    Berengut, J. F.
    Bath, J.
    Benn, F.
    Duff, A. P.
    Whitten, A. E.
    Dunn, K. E.
    Hynson, R. M.
    Turberfield, A. J.
    Lee, L. K.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2017, 46 : S137 - S137
  • [10] Counterion distribution around DNA probed by solution X-ray scattering
    Das, R
    Mills, TT
    Kwok, LW
    Maskel, GS
    Millett, IS
    Doniach, S
    Finkelstein, KD
    Herschlag, D
    Pollack, L
    PHYSICAL REVIEW LETTERS, 2003, 90 (18)