Aero-Engine Remaining Useful Life Prediction Based on Bi-Discrepancy Network

被引:0
|
作者
Liu, Nachuan [1 ]
Zhang, Xiaofeng [1 ]
Guo, Jiansheng [1 ]
Chen, Songyi [1 ]
机构
[1] Air Force Engn Univ, Coll Equipment Management & UAV Engn, Xian 710051, Peoples R China
关键词
remaining useful life prediction; domain adaptive regression; maximum classifier discrepancy; local maximum mean discrepancy;
D O I
10.3390/s23239494
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Most unsupervised domain adaptation (UDA) methods align feature distributions across different domains through adversarial learning. However, many of them require introducing an auxiliary domain alignment model, which incurs additional computational costs. In addition, they generally focus on the global distribution alignment and ignore the fine-grained domain discrepancy, so target samples with significant domain shifts cannot be detected or processed for specific tasks. To solve these problems, a bi-discrepancy network is proposed for the cross-domain prediction task. Firstly, target samples with significant domain shifts are detected by maximizing the discrepancy between the outputs of the dual regressor. Secondly, the adversarial training mechanism is adopted between the feature generator and the dual regressor for global domain adaptation. Finally, the local maximum mean discrepancy is used to locally align the fine-grained features of different degradation stages. In 12 cross@-domain prediction tasks generated on the C-MAPSS dataset, the root-mean-square error (RMSE) was reduced by 77.24%, 61.72%, 38.97%, and 3.35% on average, compared with the four mainstream UDA methods, which proved the effectiveness of the proposed method.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction of Aero-Engine Based on Deep Convolutional LSTM Network
    Wang, Shuqi
    Ji, Bin
    Wang, Wei
    Ma, Juntian
    Chen, Hai-Bao
    2022 6TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY, ICSRS, 2022, : 494 - 499
  • [2] Remaining Useful Life Prediction for Aero-Engine Based on LSTM and CNN
    Ruan, Diwang
    Wu, Yuheng
    Yan, Jianping
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 6706 - 6712
  • [3] Remaining useful life prediction for aero-engine based on the similarity of degradation characteristics
    Zhang Y.
    Wang C.
    Lu N.
    Jiang B.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2019, 41 (06): : 1414 - 1421
  • [4] Prediction of Remaining Useful Life of Aero-Engine Based on Stacked Autoencoder and DeepAR
    Li H.
    Wang Z.-J.
    Li Z.
    Chen X.
    Li Y.
    Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (11):
  • [5] Prediction method of remaining useful life of aero-engine based on long sequence
    Guo J.
    Liu G.
    Liu G.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (03): : 774 - 784
  • [6] Remaining Useful Life Prediction of Aero-Engine Based on PCA-LSTM
    Li, Hao
    Wang, Zhuojian
    Li, Yuan
    Li, Zhe
    PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 63 - 66
  • [7] Remaining Useful Life Prediction Based on Multi-scale Residual Convolutional Network for Aero-engine
    Yu, Jinhui
    Peng, Yuhuai
    Deng, Qingxu
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [8] RIMER based Remaining Useful Life Estimation of Aero-Engine
    You, Yaqian
    Sun, Jianbin
    Jiang, Jiang
    Yang, Kewei
    Ge, Bingfeng
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 2701 - 2706
  • [9] Prediction of remaining useful life of aero-engine based on residual NLSTM neural network and attention mechanism
    Chen B.
    Guo K.
    Chen F.
    Xiao W.
    Li G.
    Tao B.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (05): : 1176 - 1184
  • [10] Prediction of Aero-Engine Remaining Useful Life Combined with Fault Information
    Wang, Chao
    Peng, Zhangming
    Liu, Rong
    MACHINES, 2022, 10 (10)