Peroxymonosulfate activation with CuOX/MnFe2O4 for the regeneration of granular activated carbon after adsorption of organic pollutants

被引:2
|
作者
Liu, Juntong [1 ]
Sun, Ruoyu [1 ]
Wu, Yinsu [1 ]
Xing, Shengtao [1 ]
机构
[1] Hebei Normal Univ, Coll Chem & Mat Sci, Hebei Key Lab Inorgan Nanomat, Shijiazhuang 050024, Peoples R China
来源
关键词
Active carbon; Adsorption; Regeneration; Peroxymonosulfate activation; CuOX/MnFe2O4; PERSULFATE ACTIVATION; AQUATIC ENVIRONMENT; DEGRADATION; OXIDATION; PERFORMANCE; ANTIBIOTICS; WATER; NANOCOMPOSITES; GENERATION; REMOVAL;
D O I
10.1016/j.jece.2023.111424
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Adsorption is a cost-effective technology for the removal of refractory organic pollutants, and the regeneration of the spent adsorbent is crucial in terms of environmental and economic aspects. Herein, CuOX/MnFe2O4 was synthesized by a two-step precipitation method and investigated as a peroxymonosulfate (PMS) catalyst for the regeneration of granular activated carbon (GAC) saturated with ofloxacin. The influences of reaction conditions on the regeneration of GAC with CuOX/MnFe2O4-PMS and the possible mechanism were explored. The results showed that CuOX/MnFe2O4 exhibited high catalytic activity for the regeneration of GAC via the high mineralization of the adsorbed ofloxacin. Singlet oxygen was the dominant reactive species for organics removal, while O-2(center dot-) and SO4 center dot- also made a contribution to the degradation of organic intermediates. Under the optimized conditions, the regeneration efficiency of the spent GAC reached 98%, 89%, 87% and 85% for ofloxacin, ciprofloxacin, Orange II and methylene blue, respectively. Moreover, CuOX/MnFe2O4 and GAC exhibited high stability and good reusability in this process, suggesting the potential application of this regeneration technology for removing refractory organic pollutants.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Regeneration of granular activated carbon adsorbent by peroxymonosulfate activation with MnO2/MnFe2O4
    Liu, Juntong
    Sun, Ruoyu
    Wu, Yinsu
    Xing, Shengtao
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 56
  • [2] Peroxymonosulfate activation using MnFe2O4 modified biochar for organic pollutants degradation: Performance and mechanisms
    Chen, Xue-Li
    Li, Haitao
    Lai, LanHai
    Zhang, YueXing
    Chen, Yonglin
    Li, XiaoKang
    Liu, Bin
    Wang, HuiJuan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 308
  • [3] Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants
    Yao, Yunjin
    Cai, Yunmu
    Lu, Fang
    Wei, Fengyu
    Wang, Xiaoyao
    Wang, Shaobin
    JOURNAL OF HAZARDOUS MATERIALS, 2014, 270 : 61 - 70
  • [4] Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe2O4 magnetic nanoarchitecture for organic pollutants degradation: Structure dependence and mechanism
    Fu, Haichao
    Ma, Shuanglong
    Zhao, Peng
    Xu, Shengjun
    Zhan, Sihui
    CHEMICAL ENGINEERING JOURNAL, 2019, 360 : 157 - 170
  • [5] Alkylpolyglycoside modified MnFe2O4 with abundant oxygen vacancies boosting singlet oxygen dominated peroxymonosulfate activation for organic pollutants degradation
    Zhou, Rui
    Liu, Shuai
    He, Fangru
    Ren, Hejun
    Han, Zhonghui
    CHEMOSPHERE, 2021, 285
  • [6] Novel magnetic MnO2/MnFe2O4 nanocomposite as a heterogeneous catalyst for activation of peroxymonosulfate (PMS) toward oxidation of organic pollutants
    Chen, Gong
    Zhang, Xinyi
    Gao, Yingjie
    Zhu, Guixian
    Cheng, Qingfeng
    Cheng, Xiuwen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 213 : 456 - 464
  • [7] Degradation of ciprofloxacin by magnetic CuS/MnFe2O4 catalysts efficiently activated peroxymonosulfate
    Feng, Li
    Liu, Yanyan
    Shan, Yuxue
    Yang, Shuao
    Wu, Lanting
    Shi, Tianyu
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2024, 161
  • [8] Heterogeneous degradation of Orange II with peroxymonosulfate activated by ordered mesoporous MnFe2O4
    Deng, Jing
    Feng, ShanFang
    Ma, Xiaoyan
    Tan, Chaoqun
    Wang, Hongyu
    Zhou, Shiqing
    Zhang, Tuqiao
    Li, Jun
    SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 167 : 181 - 189
  • [9] Peroxymonosulfate activation by α-MnO2/MnFe2O4 for norfloxacin degradation: Efficiency and mechanism
    Xu, Lv Si
    Sun, Xiao Bo
    Hong, Jun-ming
    Zhang, Qian
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2021, 153
  • [10] ORGANIC POLLUTANTS ADSORPTION ONTO GRANULAR ACTIVATED CARBON
    Debih, Hadi
    Dilmi, Oualid
    Terchi, Smail
    REVUE ROUMAINE DE CHIMIE, 2019, 64 (10) : 901 - 907