Multi-Cause Calibration of Verbal Autopsy-Based Cause-Specific Mortality Estimates of Children and Neonates in Mozambique

被引:4
|
作者
Gilbert, Brian [1 ]
Fiksel, Jacob [2 ]
Wilson, Emily [3 ]
Kalter, Henry [3 ]
Kante, Almamy [3 ]
Akum, Aveika [3 ]
Blau, Dianna [4 ]
Bassat, Quique [5 ,6 ,7 ,8 ,9 ]
Macicame, Ivalda [10 ]
Gudo, Eduardo Samo [10 ]
Black, Robert [3 ]
Zeger, Scott [1 ]
Amouzou, Agbessi [3 ]
Datta, Abhirup [1 ]
机构
[1] Johns Hopkins Univ, Dept Biostat, Baltimore, MD 21205 USA
[2] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[3] Johns Hopkins Univ, Dept Int Hlth, Baltimore, MD 21205 USA
[4] Ctr Dis Control & Prevent, Ctr Global Hlth, Atlanta, GA USA
[5] Hosp Clin Univ Barcelona, ISGlobal, Barcelona, Spain
[6] Ctr Invest Saude Manhica CISM, Maputo, Mozambique
[7] Catalan Inst Res & Adv Studies ICREA, Barcelona, Spain
[8] Univ Barcelona, Pediat Dept, Hosp St Joan de Deu, Barcelona, Spain
[9] Consorcio Invest Biomed Red Epidemiol & Salud Pub, Madrid, Spain
[10] Inst Nacl Saude INS, Maputo, Mozambique
来源
基金
比尔及梅琳达.盖茨基金会;
关键词
CROSS-VALIDATION;
D O I
10.4269/ajtmh.22-0319
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The Countrywide Mortality Surveillance for Action platform is collecting verbal autopsy (VA) records from a nationally representative sample in Mozambique. These records are used to estimate the national and subnational cause-specific mortality fractions (CSMFs) for children (1-59 months) and neonates (1-28 days). Cross-tabulation of VA-based cause-of-death (COD) determination against that from the minimally invasive tissue sampling (MITS) from the Child Health and Mortality Prevention project revealed important misclassification errors for all the VA algorithms, which if not accounted for will lead to bias in the estimates of CSMF from VA. A recently proposed Bayesian VA-calibration method is used that accounts for this misclassification bias and produces calibrated estimates of CSMF. Both the VA-COD and the MITS-COD can be multi-cause (i.e., suggest more than one probable COD for some of the records). To fully use this probabilistic COD data, we use the multi-cause VA calibration. Two different computer-coded VA algorithms are considered-InSilicoVA and EAVA-and the final CSMF estimates are obtained using an ensemble calibration that uses data from both the algorithms. The calibrated estimates consistently offer a better fit to the data and reveal important changes in the CSMF for both children and neonates in Mozambique after accounting for VA misclassification bias.
引用
下载
收藏
页码:78 / 89
页数:12
相关论文
共 50 条
  • [1] Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates
    Fiksel, Jacob
    Gilbert, Brian
    Wilson, Emily
    Kalter, Henry
    Kante, Almamy
    Akum, Aveika
    Blau, Dianna
    Bassat, Quique
    Macicame, Ivalda
    Gudo, Eduardo Samo
    Black, Robert
    Zeger, Scott
    Amouzou, Agbessi
    Datta, Abhirup
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2023, 108 (05): : 66 - 77
  • [2] Cause-specific mortality of African children. A case study in Senegal based on the ''verbal autopsy'' approach
    DuLou, AD
    Pison, G
    Samb, B
    Trape, JF
    POPULATION, 1996, 51 (4-5): : 845 - 881
  • [3] Verbal autopsy-based cause-specific mortality trends in rural KwaZulu-Natal, South Africa, 2000-2009
    Herbst, Abraham J.
    Mafojane, Tshepiso
    Newell, Marie-Louise
    POPULATION HEALTH METRICS, 2011, 9
  • [4] Verbal autopsy-based cause-specific mortality trends in rural KwaZulu-Natal, South Africa, 2000-2009
    Abraham J Herbst
    Tshepiso Mafojane
    Marie-Louise Newell
    Population Health Metrics, 9
  • [5] The effect of misclassification error on reported cause-specific mortality fractions from verbal autopsy
    Anker, M
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1997, 26 (05) : 1090 - 1096
  • [6] Estimation of cause-specific mortality in Rakai, Uganda, using verbal autopsy 1999-2019
    Nabukalu, Dorean
    Calazans, Julia Almeida
    Marston, Milly
    Calvert, Clara
    Nakawooya, Hadijja
    Nansereko, Brendah
    Sekubugu, Robert
    Nakigozi, Gertrude
    Serwadda, David
    Sewankambo, Nelson
    Kigozi, Godfrey
    Gray, Ronald H.
    Nalugoda, Fred
    Makumbi, Fredrick
    Lutalo, Tom
    Todd, Jim
    GLOBAL HEALTH ACTION, 2024, 17 (01)
  • [7] The effect of different sensitivity, specificity and cause-specific mortality fractions on the estimation of differences in cause-specific mortality rates in children from studies using verbal autopsies
    Maude, GH
    Ross, DA
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 1997, 26 (05) : 1097 - 1106
  • [8] Cause-specific mortality estimates for Malaysia in 2013: results from a national sample verification study using medical record review and verbal autopsy
    Omar, Azahadi
    Ganapathy, Shubash Shander
    Anuar, Mohamad Fuad Mohamad
    Khoo, Yi Yi
    Jeevananthan, Chandrika
    Awaluddin, S. Maria
    Yn, Jane Ling Miaw
    Rao, Chalapati
    BMC PUBLIC HEALTH, 2019, 19 (1)
  • [9] Cause-specific mortality estimates for Malaysia in 2013: results from a national sample verification study using medical record review and verbal autopsy
    Azahadi Omar
    Shubash Shander Ganapathy
    Mohamad Fuad Mohamad Anuar
    Yi Yi Khoo
    Chandrika Jeevananthan
    S. Maria Awaluddin
    Jane Ling Miaw Yn
    Chalapati Rao
    BMC Public Health, 19
  • [10] Direct estimates of cause-specific mortality fractions and rates of under-five deaths in the northern and southern regions of Nigeria by verbal autopsy interview
    Adewemimo, Adeyinka
    Kalter, Henry D.
    Perin, Jamie
    Koffi, Alain K.
    Quinley, John
    Black, Robert E.
    PLOS ONE, 2017, 12 (05):