Formulae of ?-divided powers in Uq(sl2), III

被引:1
|
作者
Chen, Xinhong [1 ]
Wang, Weiqiang [2 ]
机构
[1] Southwest Jiaotong Univ, Dept Math, Chengdu 611756, Sichuan, Peoples R China
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
基金
中国国家自然科学基金;
关键词
quantum groups; -divided powers; SYMMETRIC PAIRS;
D O I
10.1016/j.jalgebra.2022.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The z -divided powers (depending on a parity) form the zcanonical basis for the split rank 1 zquantum group and they are a basic ingredient for zquantum groups of higher rank. We obtain closed formulae for the structure constants for multiplication of the z -divided powers. Closed formulae for the comultiplication of the z -divided powers are also obtained. These structure constants are integral and positive.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:221 / 248
页数:28
相关论文
共 50 条
  • [1] Formulae of i-divided powers in Uq(sl2)
    Berman, Collin
    Wang, Weiqiang
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (09) : 2667 - 2702
  • [2] An embedding of the universal Askey-Wilson algebra into Uq(sl2) ⊗ Uq(sl2) ⊗ Uq(sl2)
    Huang, Hau-Wen
    NUCLEAR PHYSICS B, 2017, 922 : 401 - 434
  • [3] MODULES OVER UQ(SL2)
    SUTER, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (02) : 359 - 393
  • [4] Whittaker modules for Uq (sl2)
    Ondrus, M
    JOURNAL OF ALGEBRA, 2005, 289 (01) : 192 - 213
  • [5] A diagrammatic definition of Uq(sl2)
    Bigelow, Stephen J.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (06)
  • [6] The algebra Uq(sl2) in disguise
    Bockting-Conrad, Sarah
    Terwilliger, Paul
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 : 548 - 585
  • [7] Restricted representations of Uq(sl2)
    Cheng, DM
    ALGEBRA COLLOQUIUM, 2000, 7 (04) : 451 - 465
  • [8] A note on the algebra Uq(sl2)
    Hou, Lihang
    Song, Yali
    Hou, Bo
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (05) : 2220 - 2226
  • [9] BIDIAGONAL PAIRS, THE LIE ALGEBRA sl2, AND THE QUANTUM GROUP Uq(sl2)
    Funk-Neubauer, Darren
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (05)
  • [10] Uq(sl2) at fourth root of unity
    Kastler, D
    Krajewski, T
    Seibt, P
    Valavane, K
    ANALYSIS ON INFINITE-DIMENSIONAL LIE GROUPS AND ALGEBRAS, 1998, : 154 - 181