Load prediction of integrated energy systems for energy saving and carbon emission based on novel multi-scale fusion convolutional neural network

被引:12
|
作者
Chen, Zhiwei [1 ]
Zhao, Weicheng [1 ]
Lin, Xiaoyong [1 ]
Han, Yongming [1 ,2 ]
Hu, Xuan [1 ,2 ]
Yuan, Kui [1 ]
Geng, Zhiqiang [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing, Peoples R China
[2] Minist Educ China, Engn Res Ctr Intelligent PSE, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated energy system; Multi-scale fusion convolutional neural network; Bidirectional long and short-term memory network; Multi-domains hierarchical decoding; Energy conservation; Emissions reduction; WIND-SPEED;
D O I
10.1016/j.energy.2023.130181
中图分类号
O414.1 [热力学];
学科分类号
摘要
The integrated energy system plays an important role in the energy conservation, emission reduction and the resource-efficient utilization. Accurate load forecasting is a significant basis for the optimal scheduling of the integrated energy system. The integrated energy system has coupling interaction between different energy sources in production, distribution and storage. However, the traditional method cannot effectively extract multi -scale features and utilize the coupling information between the multivariate energy sources. In this paper, a novel multi-scale fusion convolutional neural network integrating the bi-directional long short-term memory network and multi-domains hierarchical decoding is proposed to extract and analyze multivariate load data coupling in the integrated energy system data. The multi-scale fusion convolutional neural network is con-structed by the multi-dimension convolution layer to obtain multi-scale feature of the integrated energy system data. Meanwhile, the bi-directional long short-term memory network is applied to extract the time dependencies of the integrated energy system data. Finally, the multi-domains hierarchical decoding extracts the coupling characteristics of different domains to predict multiple domains values. Compared with the backpropagation neural network, the support vector machine, the short and long-time memory network, the bi-directional long short-term memory network, and the convolutional neural network -bi-directional long short-term memory network, the proposed method achieves state-of-the-art results in terms of the mean absolute percentage error with 0.365 %, the explained variance score with 99.987 % and the R-2-score with 99.984 %, which proves the effectiveness of the proposed model in the load prediction of the integrated energy system. In addition, the proposed method can provide operational guidance for energy production and storage. Through the operation guidance of the proposed method, the carbon emissions are reduced by 238791.58 kg every week.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Impact Load Localization Based on Multi-Scale Feature Fusion Convolutional Neural Network
    Wu, Shiji
    Huang, Xiufeng
    Xu, Rongwu
    Yu, Wenjing
    Cheng, Guo
    SENSORS, 2024, 24 (18)
  • [2] Tool Wear Prediction Based on a Multi-Scale Convolutional Neural Network with Attention Fusion
    Huang, Qingqing
    Wu, Di
    Huang, Hao
    Zhang, Yan
    Han, Yan
    INFORMATION, 2022, 13 (10)
  • [3] QoS Prediction via Multi-scale Feature Fusion Based on Convolutional Neural Network
    Xu, Hanzhi
    Shu, Yanjun
    Zhang, Zhan
    Zuo, Decheng
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT I, 2023, 14419 : 119 - 134
  • [4] A Multi-Scale Fusion Convolutional Neural Network for Face Detection
    Chen, Qiaosong
    Meng, Xiaomin
    Li, Wen
    Fu, Xingyu
    Deng, Xin
    Wang, Jin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1013 - 1018
  • [5] A novel multi-scale fusion convolutional neural network for EEG-based motor imagery classification
    Yang, Guangyu
    Liu, Jinguo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [6] Multi-scale convolutional neural network for multi-focus image fusion
    Mustafa, Hafiz Tayyab
    Yang, Jie
    Zareapoor, Masoumeh
    IMAGE AND VISION COMPUTING, 2019, 85 : 26 - 35
  • [7] Underwater image restoration based on multi-scale attention fusion and convolutional neural network
    Wang, De-Xing
    Wu, Ruo-You
    Yuan, Hong-Chun
    Gong, Peng
    Wang, Yue
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2021, 51 (04): : 1396 - 1404
  • [8] Image fusion algorithm based on multi-scale detail siamese convolutional neural network
    Liu Bo
    Han Guang-liang
    Luo Hui-yuan
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2021, 36 (09) : 1283 - 1293
  • [9] Multi-Scale Convolutional Neural Network-Based Intra Prediction for Video Coding
    Wang, Yang
    Fan, Xiaopeng
    Liu, Shaohui
    Zhao, Debin
    Gao, Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (07) : 1803 - 1815
  • [10] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Myeongho Jeon
    Han-Soo Choi
    Junho Lee
    Myungjoo Kang
    Fire Technology, 2021, 57 : 2533 - 2551