Selective Interaction between Helical Polymer Backbones and Chiral Graft Polymer Chains in Graft Copolymers

被引:0
|
作者
Yamaguchi, Isao [1 ]
Nasu, Ryoto [1 ]
Wang, Aohan [1 ]
机构
[1] Shimane Univ, Dept Mat Chem, Matsue 6908504, Japan
关键词
THROUGH-SPACE INTERACTIONS; ANION-CONTAINING POLYMERS; MACROMOLECULAR HELICITY; STEREOREGULAR POLY((4-CARBOXYPHENYL)ACETYLENE); POLY(PHENYLACETYLENE)S BEARING; HIERARCHICAL AMPLIFICATION; ENANTIOMERIC HELICES; INTRINSIC-VISCOSITY; CHEMICAL-PROPERTIES; DUAL MEMORY;
D O I
10.1021/acs.macromol.3c02234
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The helical polymers, comprising (R)-(-)- or (S)-(+)-2-methylpiperazinium-2,4-pentadienylideneammonium 7,7 ',8,8 '-tetracyanoquinodimethane anion radical, namely, P(R;TCNQ(-center dot)) and P(S;TCNQ(-center dot)), were employed for the synthesis of copolymers grafted with chiral polymer chains. The AIBN-initiated polymerization of N-acryloyl-d-alanine methyl ester (d-AME) and N-acryloyl-l-alanine methyl ester (l-AME), followed by the treatment with P(R;TCNQ(-center dot)) and P(S;TCNQ(-center dot)), resulted in the formation of the graft copolymers with polyolefin graft chains, namely, P(R;D), P(R;L), P(S;D), and P(S;L), through radical coupling between the terminal radical of the growing polyolefin and TCNQ(-center dot). The circular dichroism (CD) measurements revealed that the helical conformation of the polymer backbone remained in P(R;D) and P(S;L) but decreased in P(R;L) and P(S;D). Density functional theory (DFT) calculations showed that the conformational fitting between the polymer backbone and the graft polymer chain in graft copolymers played an important role in preserving the helical polymer backbone structure.
引用
收藏
页码:1001 / 1010
页数:10
相关论文
共 50 条
  • [1] Graft Copolymers with Conducting Polymer Backbones: A Versatile Route to Functional Materials
    Strover, Lisa T.
    Malmstroem, Jenny
    Travas-Sejdic, Jadranka
    CHEMICAL RECORD, 2016, 16 (01): : 393 - 418
  • [2] Polymer surface with graft chains
    Kato, K
    Uchida, E
    Kang, ET
    Uyama, Y
    Ikada, Y
    PROGRESS IN POLYMER SCIENCE, 2003, 28 (02) : 209 - 259
  • [3] Solid-State Graft Polymer Electrolytes with Conductive Backbones and Side Chains for Lithium Batteries
    Zeng, Guangjian
    Dai, Shuqi
    Chen, Xiupeng
    Qiu, Lu
    Kong, Xian
    Huang, Mingjun
    Wen, Tao
    MACROMOLECULES, 2024, 57 (03) : 1258 - 1265
  • [4] Graft copolymers of peo-ppo-peo triblock polyethers on bioadhesive polymer backbones: Synthesis and properties
    Hoffman, AS
    Chen, GH
    Wu, XD
    Ding, ZL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 213 : 23 - POLY
  • [5] Graft-to/Graft-From Synthesis of Janus Graft Copolymers for Bottlebrush Polymer Electrolytes
    Li, Shaoqiao
    Guo, Kairui
    Xue, Zhigang
    MACROMOLECULAR RAPID COMMUNICATIONS, 2025,
  • [6] GRAFT COPOLYMERS OF PHENOLIC NOVOLACS ON POLYAMIDE BACKBONES
    RAVVE, A
    FITKO, CW
    JOURNAL OF POLYMER SCIENCE PART A-1-POLYMER CHEMISTRY, 1966, 4 (10PA): : 2533 - &
  • [7] MOLECULAR-WEIGHTS OF BACKBONES IN GRAFT COPOLYMERS
    COLLINS, R
    HUGLIN, MB
    RICHARDS, RW
    EUROPEAN POLYMER JOURNAL, 1975, 11 (03) : 197 - 202
  • [8] SURFACE MODIFICATION OF POLYMER SOLIDS BY GRAFT-COPOLYMERS
    TSUKAHARA, Y
    KOHNO, K
    INOUE, H
    YAMASHITA, Y
    NIPPON KAGAKU KAISHI, 1985, (06) : 1070 - 1078
  • [9] Microstructure control in block and graft copolymers, and polymer blends
    Ishizu, Koji
    Polymer-plastics technology and engineering, 1989, 28 (5-6): : 601 - 630
  • [10] Efficiency of graft copolymers as compatibilizers for immiscible polymer blends
    Zhang, Cai-Liang
    Feng, Lian-Fang
    Gu, Xue-Ping
    Hoppe, Sandrine
    Hu, Guo-Hua
    POLYMER, 2007, 48 (20) : 5940 - 5949