EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A CLASS OF HAMILTONIAN STRONGLY DEGENERATE ELLIPTIC SYSTEM

被引:0
|
作者
Nguyen Viet Tuan [1 ]
机构
[1] Sao Do Univ, Fac Basic Sci, Chi Linh, Hai Duong, Vietnam
来源
关键词
Hamiltonian elliptic system; variational methods; strongly degenerate; existence and nonexistence; DELTA(LAMBDA)-LAPLACE EQUATIONS;
D O I
10.4134/CKMS.c220080
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence and nonexistence of solutions for a class of Hamiltonian strongly degenerate elliptic system with subcritical growth {-Delta(lambda)u - mu v = vertical bar v vertical bar(p-1)v in Omega, -Delta(lambda)v - mu u = vertical bar u vertical bar(q-1)u in Omega, u = v = 0 on partial derivative Omega, where p, q > 1 and Omega is a smooth bounded domain in R-N, N >= 3. Here Delta(lambda) is the strongly degenerate elliptic operator. The existence of at least a nontrivial solution is obtained by variational methods while the nonexistence of positive solutions are proven by a contradiction argument.
引用
收藏
页码:741 / 754
页数:14
相关论文
共 50 条