Sentiment Analysis Based on Urdu Reviews Using Hybrid Deep Learning Models

被引:1
|
作者
Singh, Neha [1 ]
Jaiswal, Umesh Chandra [1 ]
机构
[1] Madan Mohan Malaviya Univ Technol, Dept ITCA, Gorakhpur, India
关键词
Emotion analyser; people sentiment; public opinion; sentiment analysis; Urdu review; ROMAN URDU;
D O I
10.2478/acss-2023-0026
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Worldwide websites publish enormous amounts of text, audio, and video content every day. This valuable information allows for the assessment of regional trends and general public opinion. Based on consumers' online behavioural habits, businesses are showing them their chosen ads. It is difficult to carefully analyse these raw data to find valuable trends, especially for a language with limited resources like Urdu. There have not been many studies or efforts to create language resources for the Urdu language and analyse people's sentiment, even though there are more than 169 million Urdu speakers in the world and a sizable amount of Urdu data is generated on various social media platforms every day. However, there has been relatively little research on sentiment analysis in Urdu. Researchers have primarily performed studies in English and Chinese. In response to this gap, we suggest an emotion analyser for Urdu, the primary language of Asia, in this research study. In this paper, we propose to assess sentiment in Urdu review texts by integrating a bidirectional long short-term memory (BiLSTM) model with a convolutional neural network (CNN). We contrast the CNN, LSTM, BiLSTM, and CNN-LSTM models with the CNN-BiLSTM model. With an accuracy rate of 0.99 %, the CNN-BiLSTM model performed better than the other models in an initial investigation.
引用
收藏
页码:258 / 265
页数:8
相关论文
共 50 条
  • [1] Sentiment analysis for Urdu online reviews using deep learning models
    Safder, Iqra
    Mehmood, Zainab
    Sarwar, Raheem
    Hassan, Saeed-Ul
    Zaman, Farooq
    Nawab, Rao Muhammad Adeel
    Bukhari, Faisal
    Abbasi, Rabeeh Ayaz
    Alelyani, Salem
    Aljohani, Naif Radi
    Nawaz, Raheel
    [J]. EXPERT SYSTEMS, 2021, 38 (08)
  • [2] Sentiment Analysis of Movie Reviews Based on Sentiment Dictionary and Deep Learning Models
    Liu, Caihong
    Liu, Changhui
    [J]. 2023 THE 6TH INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA 2023, 2023, : 144 - 148
  • [3] Urdu Sentiment Analysis With Deep Learning Methods
    Khan, Lal
    Amjad, Ammar
    Ashraf, Noman
    Chang, Hsien-Tsung
    Gelbukh, Alexander
    [J]. IEEE ACCESS, 2021, 9 : 97803 - 97812
  • [4] Hybrid Deep Learning Models for Sentiment Analysis
    Dang, Cach N.
    Moreno-Garcia, Maria N.
    De la Prieta, Fernando
    [J]. COMPLEXITY, 2021, 2021
  • [5] A HYBRID DEEP LEARNING APPROACH FOR SENTIMENT ANALYSIS IN PRODUCT REVIEWS
    Kuang, Minghui
    Safa, Ramin
    Edalatpanah, Seyyed Ahmad
    Keyser, Robert S.
    [J]. FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2023, 21 (03) : 479 - 500
  • [6] Sentiment Analysis of Consumer Reviews Using Deep Learning
    Iqbal, Amjad
    Amin, Rashid
    Iqbal, Javed
    Alroobaea, Roobaea
    Binmahfoudh, Ahmed
    Hussain, Mudassar
    [J]. SUSTAINABILITY, 2022, 14 (17)
  • [7] Sentiment Analysis of Product Reviews using Deep Learning
    Panthati, Jagadeesh
    Bhaskar, Jasmine
    Ranga, Tarun Kumar
    Challa, Manish Reddy
    [J]. 2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2018, : 2408 - 2414
  • [8] UTSA: Urdu Text Sentiment Analysis Using Deep Learning Methods
    Naqvi, Uzma
    Majid, Abdul
    Abbas, Syed Ali
    [J]. IEEE ACCESS, 2021, 9 : 114085 - 114094
  • [9] UTSA: Urdu Text Sentiment Analysis Using Deep Learning Methods
    Naqvi, Uzma
    Majid, Abdul
    Abbas, Syed Ali
    [J]. IEEE Access, 2021, 9 : 114085 - 114094
  • [10] Social Network Sentiment Analysis Using Hybrid Deep Learning Models
    Merayo, Noemi
    Vegas, Jesus
    Llamas, Cesar
    Fernandez, Patricia
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (20):