Unsupervised Cross-Modal Hashing With Modality-Interaction

被引:13
|
作者
Tu, Rong-Cheng [1 ,2 ]
Jiang, Jie [3 ]
Lin, Qinghong [4 ]
Cai, Chengfei [3 ]
Tian, Shangxuan [3 ]
Wang, Hongfa [3 ]
Liu, Wei [3 ]
机构
[1] Tencent, Shenzhen 518100, Peoples R China
[2] Beijing Inst Technol, Dept Comp Sci & Technol, Beijing 100081, Peoples R China
[3] Tencent Data Platform, Shenzhen 518051, Guangdong, Peoples R China
[4] Natl Univ Singapore, Elect & Comp Engn, Singapore 138600, Singapore
关键词
Cross-modal Retrieval; Hashing; Modality-interaction; Bit-selection; ATTENTION; NETWORK;
D O I
10.1109/TCSVT.2023.3251395
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, numerous unsupervised cross-modal hashing methods have been proposed to deal the image-text retrieval tasks for the unlabeled cross-modal data. However, when these methods learn to generate hash codes, almost all of them lack modality-interaction in the following two aspects: 1) The instance similarity matrix used to guide the hashing networks training is constructed without image-text interaction, which fails to capture the fine-grained cross-modal cues to elaborately characterize the intrinsic semantic similarity among the datapoints. 2) The binary codes used for quantization loss are inferior because they are generated by directly quantizing a simple combination of continuous hash codes from different modalities without the interaction among these continuous hash codes. Such problems will cause the generated hash codes to be of poor quality and degrade the retrieval performance. Hence, in this paper, we propose a novel Unsupervised Cross-modal Hashing with Modality-interaction, termed UCHM. Specifically, by optimizing a novel hash-similarity-friendly loss, a modality-interaction-enabled (MIE) similarity generator is first trained to generate a superior MIE similarity matrix for the training set. Then, the generated MIE similarity matrix is utilized as guiding information to train the deep hashing networks. Furthermore, during the process of training the hashing networks, a novel bit-selection module is proposed to generate high-quality unified binary codes for the quantization loss with the interaction among continuous codes from different modalities, thereby further enhancing the retrieval performance. Extensive experiments on two widely used datasets show that the proposed UCHM outperforms state-of-the-art techniques on cross-modal retrieval tasks.
引用
收藏
页码:5296 / 5308
页数:13
相关论文
共 50 条
  • [1] Unsupervised Contrastive Cross-Modal Hashing
    Hu, Peng
    Zhu, Hongyuan
    Lin, Jie
    Peng, Dezhong
    Zhao, Yin-Ping
    Peng, Xi
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (03) : 3877 - 3889
  • [2] Completely Unsupervised Cross-Modal Hashing
    Duan, Jiasheng
    Zhang, Pengfei
    Huang, Zi
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 178 - 194
  • [3] Unsupervised Generative Adversarial Cross-Modal Hashing
    Zhang, Jian
    Peng, Yuxin
    Yuan, Mingkuan
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 539 - 546
  • [4] Unsupervised Deep Fusion Cross-modal Hashing
    Huang, Jiaming
    Min, Chen
    Jing, Liping
    [J]. ICMI'19: PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2019, : 358 - 366
  • [5] Unsupervised Cross-Modal Hashing with Soft Constraint
    Zhou, Yuxuan
    Li, Yaoxian
    Liu, Rui
    Hao, Lingyun
    Sun, Yuanliang
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT II, 2018, 10736 : 756 - 765
  • [6] Unsupervised Multi-modal Hashing for Cross-Modal Retrieval
    Yu, Jun
    Wu, Xiao-Jun
    Zhang, Donglin
    [J]. COGNITIVE COMPUTATION, 2022, 14 (03) : 1159 - 1171
  • [7] Unsupervised Multi-modal Hashing for Cross-Modal Retrieval
    Jun Yu
    Xiao-Jun Wu
    Donglin Zhang
    [J]. Cognitive Computation, 2022, 14 : 1159 - 1171
  • [8] Robust Unsupervised Cross-modal Hashing for Multimedia Retrieval
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (03)
  • [9] Modality-Invariant Asymmetric Networks for Cross-Modal Hashing
    Zhang, Zheng
    Luo, Haoyang
    Zhu, Lei
    Lu, Guangming
    Shen, Heng Tao
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5091 - 5104
  • [10] Deep Unsupervised Momentum Contrastive Hashing for Cross-modal Retrieval
    Lu, Kangkang
    Yu, Yanhua
    Liang, Meiyu
    Zhang, Min
    Cao, Xiaowen
    Zhao, Zehua
    Yin, Mengran
    Xue, Zhe
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 126 - 131