Federated Learning-Based Insulator Fault Detection for Data Privacy Preserving

被引:2
|
作者
Luan, Zhirong [1 ]
Lai, Yujun [1 ]
Xu, Zhicong [1 ]
Gao, Yu [1 ]
Wang, Qian [1 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian 710048, Peoples R China
基金
中国国家自然科学基金;
关键词
vision sensor; insulator fault detection; federated learning; privacy-preserving;
D O I
10.3390/s23125624
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Insulators are widely used in distribution network transmission lines and serve as critical components of the distribution network. The detection of insulator faults is essential to ensure the safe and stable operation of the distribution network. Traditional insulator detection methods often rely on manual identification, which is time-consuming, labor-intensive, and inaccurate. The use of vision sensors for object detection is an efficient and accurate detection method that requires minimal human intervention. Currently, there is a considerable amount of research on the application of vision sensors for insulator fault recognition in object detection. However, centralized object detection requires uploading data collected from various substations through vision sensors to a computing center, which may raise data privacy concerns and increase uncertainty and operational risks in the distribution network. Therefore, this paper proposes a privacy-preserving insulator detection method based on federated learning. An insulator fault detection dataset is constructed, and Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) models are trained within the federated learning framework for insulator fault detection. Most of the existing insulator anomaly detection methods use a centralized model training method, which has the advantage of achieving a target detection accuracy of over 90%, but the disadvantage is that the training process is prone to privacy leakage and lacks privacy protection capability. Compared with the existing insulator target detection methods, the proposed method can also achieve an insulator anomaly detection accuracy of more than 90% and provide effective privacy protection. Through experiments, we demonstrate the applicability of the federated learning framework for insulator fault detection and its ability to protect data privacy while ensuring test accuracy.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Federated Learning-Based Privacy-Preserving Data Aggregation Scheme for IIoT
    Fan, Hongbin
    Huang, Changbing
    Liu, Yining
    IEEE ACCESS, 2023, 11 : 6700 - 6707
  • [2] Deep learning-based privacy-preserving recommendations in federated learning
    Kolli, Chandra Sekhar
    Reddy, V. V. Krishna
    Reddy, Tatireddy Subba
    Chandol, Mohan Kumar
    Dasari, Durga Bhavani
    Reddy, Mule RamaKrishna
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2024, 53 (06) : 651 - 677
  • [3] Privacy-Preserving Federated Learning-Based Intrusion Detection System for IoHT Devices
    Mosaiyebzadeh, Fatemeh
    Pouriyeh, Seyedamin
    Han, Meng
    Liu, Liyuan
    Xie, Yixin
    Zhao, Liang
    Batista, Daniel Macedo
    ELECTRONICS, 2025, 14 (01):
  • [4] RPFL: A Reliable and Privacy-Preserving Framework for Federated Learning-Based IoT Malware Detection
    Asiri, Mohammed
    Khemakhem, Maher A.
    Alhebshi, Reemah M.
    Alsulami, Bassma S.
    Eassa, Fathy E.
    ELECTRONICS, 2025, 14 (06):
  • [5] Poisoning Attack Mitigation for Privacy-Preserving Federated Learning-based Energy Theft Detection
    Srewa, Mahmoud
    Winfree, Michaela F.
    Ibrahem, Mohamed I.
    Nabil, Mahmoud
    Lu, Rongxing
    Alsharif, Ahmad
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 3962 - 3968
  • [6] Privacy-Preserving Federated Learning-Based Intrusion Detection Technique for Cyber-Physical Systems
    Mahmud, Syeda Aunanya
    Islam, Nazmul
    Islam, Zahidul
    Rahman, Ziaur
    Mehedi, Sk. Tanzir
    MATHEMATICS, 2024, 12 (20)
  • [7] Deep Federated Learning-Based Privacy-Preserving Wind Power Forecasting
    Ahmadi, Amirhossein
    Talaei, Mohammad
    Sadipour, Masod
    Amani, Ali Moradi
    Jalili, Mahdi
    IEEE ACCESS, 2023, 11 : 39521 - 39530
  • [8] Privacy-Preserving Aggregation for Federated Learning-Based Navigation in Vehicular Fog
    Kong, Qinglei
    Yin, Feng
    Lu, Rongxing
    Li, Beibei
    Wang, Xiaohong
    Cui, Shuguang
    Zhang, Ping
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) : 8453 - 8463
  • [9] Federated learning-based trajectory prediction model with privacy preserving for intelligent vehicle
    Han, Mu
    Xu, Kai
    Ma, Shidian
    Li, Aoxue
    Jiang, Haobin
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10861 - 10879
  • [10] Privacy-Preserving Federated Learning for Power Transformer Fault Diagnosis With Unbalanced Data
    Wu, Qi
    Dong, Chen
    Guo, Fanghong
    Wang, Lei
    Wu, Xiang
    Wen, Changyun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 5383 - 5394