Genome-scale and pathway engineering for the sustainable aviation fuel precursor isoprenol production in Pseudomonas putida

被引:1
|
作者
Banerjee, Deepanwita [1 ,2 ]
Yunus, Ian S. [1 ,2 ]
Wang, Xi [1 ,2 ]
Kim, Jinho [1 ,2 ]
Srinivasan, Aparajitha [1 ,2 ]
Menchavez, Russel [1 ,2 ]
Chen, Yan [1 ,2 ]
Gin, Jennifer W. [1 ,2 ]
Petzold, Christopher J. [1 ,2 ]
Martin, Hector Garcia [1 ,2 ]
Magnuson, Jon K. [1 ,3 ]
Adams, Paul D. [1 ,4 ]
Simmons, Blake A. [1 ,2 ]
Mukhopadhyay, Aindrila [1 ,2 ,5 ]
Kim, Joonhoon [1 ,3 ]
Lee, Taek Soon [1 ,2 ]
机构
[1] Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA
[2] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA
[3] Pacific Northwest Natl Lab, Energy Proc & Mat Div, Richland, WA 99354 USA
[4] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA
关键词
Sustainable aviation fuel (SAF); Pseudomonas putida; Isoprenol; Genome-scale metabolic model (GSMM); Constrained minimal cut sets (cMCS); OptKnock; CO-UTILIZATION; STRAIN; GLUCOSE; CONVERSION; CELLOBIOSE; XYLOSE; QUEST; ACID;
D O I
10.1016/j.ymben.2024.02.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed -batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.
引用
收藏
页码:157 / 170
页数:14
相关论文
共 47 条
  • [1] Genome-scale metabolic model of Chromochloris, an emerging model organism for sustainable fuel production
    Boyle, Nanette
    Metcalf, Alexander
    Nagygyor, Anthony
    Prentice, Walter
    Ramsey, Stuart
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [2] Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12
    Sol Han
    Dohyeon Kim
    Youngshin Kim
    Sung Ho Yoon
    [J]. BMC Genomics, 25
  • [3] High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities
    Nogales, Juan
    Mueller, Joshua
    Gudmundsson, Steinn
    Canalejo, Francisco J.
    Duque, Estrella
    Monk, Jonathan
    Feist, Adam M.
    Ramos, Juan Luis
    Niu, Wei
    Palsson, Bernhard O.
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2020, 22 (01) : 255 - 269
  • [4] Genome-scale metabolic network model and phenome of solvent-tolerant Pseudomonas putida S12
    Han, Sol
    Kim, Dohyeon
    Kim, Youngshin
    Yoon, Sung Ho
    [J]. BMC GENOMICS, 2024, 25 (01)
  • [5] Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology
    Puchalka, Jacek
    Oberhardt, Matthew A.
    Godinho, Miguel
    Bielecka, Agata
    Regenhardt, Daniela
    Timmis, Kenneth N.
    Papin, Jason A.
    dos Santos, Vitor A. P. Martins
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (10)
  • [6] Analysis of Pseudomonas putida growth on non-trivial carbon sources using transcriptomics and genome-scale modelling
    D'Arrigo, Isotta
    Cardoso, Joao G. R.
    Rennig, Maja
    Sonnenschein, Nikolaus
    Herrgard, Markus J.
    Long, Katherine S.
    [J]. ENVIRONMENTAL MICROBIOLOGY REPORTS, 2019, 11 (02): : 87 - 97
  • [7] A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory
    Nogales, Juan
    Palsson, Bernhard O.
    Thiele, Ines
    [J]. BMC SYSTEMS BIOLOGY, 2008, 2
  • [8] The pathway for achieving sustainable aviation fuel production in the Middle East and North Africa region
    Abbas, Ismail
    Shaar, Ali
    El Osta, Rola
    [J]. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2024, 43 (03)
  • [9] Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production
    Agren, Rasmus
    Otero, Jose Manuel
    Nielsen, Jens
    [J]. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2013, 40 (07) : 735 - 747
  • [10] Genome-scale metabolic engineering of Mannheimia succiniciproducens for enhanced succinic acid production.
    Lee, SY
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1174 - U1174