SHARP AND FAST BOUNDS FOR THE CELIS-DENNIS-TAPIA PROBLEM

被引:2
|
作者
Consolini, Luca [1 ]
Locatelli, Marco [1 ]
机构
[1] Univ Parma, Dipartimento Ingn & Architettura, I-43121 Parma, Italy
关键词
CDT problem; dual Lagrangian bound; linear cuts; STRONG DUALITY; REGION; OPTIMIZATION; CONSTRAINTS; SUBPROBLEM; BALLS; GAP;
D O I
10.1137/21M144548X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Celis--Dennis--Tapia (CDT) problem a quadratic function is minimized over a region defined by two strictly convex quadratic constraints. In this paper we rederive a necessary and sufficient optimality condition for the exactness of the dual Lagrangian bound (equivalent to the Shor relaxation bound in this case). Starting from such a condition, we propose strengthening the dual Lagrangian bound by adding one or two linear cuts to the Lagrangian relaxation. Such cuts are obtained from supporting hyperplanes of one of the two constraints. Thus, they are redundant for the original problem, but they are not for the Lagrangian relaxation. The computational experiments show that the new bounds are effective and require limited computing times. In particular, one of the proposed bounds is able to solve all but one of the 212 hard instances of the CDT problem presented in [S. Burer and K. M. Anstreicher, SIAM J. Optim., 23 (2013), pp. 432--451].
引用
收藏
页码:868 / 898
页数:31
相关论文
共 42 条
  • [1] Subspace choices for the Celis-Dennis-Tapia problem
    ZHAO Xin
    FAN JinYan
    [J]. Science China Mathematics, 2017, 60 (09) : 1717 - 1732
  • [2] Subspace choices for the Celis-Dennis-Tapia problem
    Zhao, Xin
    Fan, JinYan
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (09) : 1717 - 1732
  • [3] Subspace choices for the Celis-Dennis-Tapia problem
    Xin Zhao
    JinYan Fan
    [J]. Science China Mathematics, 2017, 60 : 1717 - 1732
  • [4] Narrowing the difficulty gap for the Celis-Dennis-Tapia problem
    Bomze, Immanuel M.
    Overton, Michael L.
    [J]. MATHEMATICAL PROGRAMMING, 2015, 151 (02) : 459 - 476
  • [5] Compute a Celis-Dennis-Tapia step
    Li, GD
    Yuan, YX
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2005, 23 (05) : 463 - 478
  • [6] On local solutions of the Celis-Dennis-Tapia subproblem
    Chen, XD
    Yuan, YX
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) : 359 - 383
  • [7] On KKT points of Celis-Dennis-Tapia subproblem
    Li Gaidi
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (05): : 651 - 659
  • [8] On KKT points of Celis-Dennis-Tapia subproblem
    Gaidi Li
    [J]. Science in China Series A, 2006, 49 : 651 - 659
  • [9] On KKT points of Celis-Dennis-Tapia subproblem
    LI Gaidi College of Applied Sciences
    [J]. Science China Mathematics, 2006, (05) : 651 - 659
  • [10] NEW RESULTS ON NARROWING THE DUALITY GAP OF THE EXTENDED CELIS-DENNIS-TAPIA PROBLEM
    Yuan, Jianhua
    Wang, Meiling
    Ai, Wenbao
    Shuai, Tianping
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) : 890 - 909