TChange: A Hybrid Transformer-CNN Change Detection Network

被引:15
|
作者
Deng, Yupeng [1 ,2 ,3 ]
Meng, Yu [1 ]
Chen, Jingbo [1 ]
Yue, Anzhi [1 ]
Liu, Diyou [1 ]
Chen, Jing [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Elect Elect & Commun Engn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
deep learning; change detection; convolutional neural network; multihead attention; transformer; IMAGES;
D O I
10.3390/rs15051219
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Change detection is employed to identify regions of change between two different time phases. Presently, the CNN-based change detection algorithm is the mainstream direction of change detection. However, there are two challenges in current change detection methods: (1) the intrascale problem: CNN-based change detection algorithms, due to the local receptive field limitation, can only fuse pairwise characteristics in a local range within a single scale, causing incomplete detection of large-scale targets. (2) The interscale problem: Current algorithms generally fuse layer by layer for interscale communication, with one-way flow of information and long propagation links, which are prone to information loss, making it difficult to take into account both large targets and small targets. To address the above issues, a hybrid transformer-CNN change detection network (TChange) for very-high-spatial-resolution (VHR) remote sensing images is proposed. (1) Change multihead self-attention (Change MSA) is built for global intrascale information exchange of spatial features and channel characteristics. (2) An interscale transformer module (ISTM) is proposed to perform direct interscale information exchange. To address the problem that the transformer tends to lose high-frequency features, the use of deep edge supervision is proposed to replace the commonly utilized depth supervision. TChange achieves state-of-the-art scores on the WUH-CD and LEVIR-CD open-source datasets. Furthermore, to validate the effectiveness of Change MSA and the ISTM proposed by TChange, we construct a change detection dataset, TZ-CD, that covers an area of 900 km2 and contains numerous large targets and weak change targets.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Transformer-CNN hybrid network for crowd counting
    Yu J.
    Yu Y.
    Qian J.
    Han X.
    Zhu F.
    Zhu Z.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 10773 - 10785
  • [2] Hybrid transformer-CNN networks using superpixel segmentation for remote sensing building change detection
    Liang, Shike
    Hua, Zhen
    Li, Jinjiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (08) : 2754 - 2780
  • [3] CSegNet: a hybrid transformer-CNN network for road crack image segmentation
    Dong, Hao
    Du, Yinlai
    Feng, Dong
    Hu, Qingyuan
    Zhou, Mingzhu
    Xing, Jun
    Zhang, Long
    Wang, Shu
    Liu, Yong
    INSIGHT, 2024, 66 (12) : 737 - 746
  • [4] Transformer-CNN hybrid network for improving PET time of flight prediction
    Feng, Xuhui
    Muhashi, Amanjule
    Onishi, Yuya
    Ota, Ryosuke
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):
  • [5] Hybrid Transformer-CNN for Real Image Denoising
    Zhao, Mo
    Cao, Gang
    Huang, Xianglin
    Yang, Lifang
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1252 - 1256
  • [6] TC-Radar: Transformer-CNN Hybrid Network for Millimeter-Wave Radar Object Detection
    Jia, Fengde
    Li, Chenyang
    Bi, Siyi
    Qian, Junhui
    Wei, Leizhe
    Sun, Guohao
    REMOTE SENSING, 2024, 16 (16)
  • [7] Transformer-CNN for small image object detection
    Chen, Yan-Lin
    Lin, Chun-Liang
    Lin, Yu-Chen
    Chen, Tzu-Chun
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2024, 129
  • [8] HTCNet: Hybrid Transformer-CNN for SAR Image Denoising
    Huang, Min
    Luo, Shuaili
    Wang, Shuaihui
    Guo, Jinghang
    Wang, Jingyang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 19380 - 19394
  • [9] HTC-Grasp: A Hybrid Transformer-CNN Architecture for Robotic Grasp Detection
    Zhang, Qiang
    Zhu, Jianwei
    Sun, Xueying
    Liu, Mingmin
    ELECTRONICS, 2023, 12 (06)
  • [10] LightingFormer: Transformer-CNN hybrid network for low-light image enhancement
    Bi, Cong
    Qian, Wenhua
    Cao, Jinde
    Wang, Xue
    COMPUTERS & GRAPHICS-UK, 2024, 124