A matrix version of the Steinitz lemma

被引:0
|
作者
Barany, Imre [1 ,2 ]
机构
[1] Alfred Renyi Inst Math, 13-15 Realtanoda St, H-1053 Budapest, Hungary
[2] UCL, Dept Math, Gower St, London WC1E 6BT, England
来源
关键词
SERIES;
D O I
10.1515/crelle-2024-0008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Steinitz lemma, a classic from 1913, states that a(1), ... , a(n), a sequence of vectors in R-d with Sigma(n)(i=1) a(i) = 0, can be rearranged so that every partial sum of the rearranged sequence has norm at most 2d max parallel to a(i)parallel to. In the matrix version A is a k x n matrix with entries a(i)(j) is an element of R-d with Sigma(k)(j=1) Sigma(n)(i=1) a(i)(j) = 0. It is proved in [T. Oertel, J. Paat and R. Weismantel, A colorful Steinitz lemma with applications to block integer programs, Math. Program. 204 (2024), 677-702] that there is a rearrangement of row j of A (for every j) such that the sum of the entries in the first m columns of the rearranged matrix has norm at most 40d(5) max parallel to a(i)(j)parallel to (for every m). We improve this bound to (4d - 2) max parallel to a(i)(j)parallel to.
引用
收藏
页码:261 / 267
页数:7
相关论文
共 50 条
  • [1] ON THE STEINITZ EXCHANGE LEMMA
    DEOLIVEIRA, AG
    [J]. DISCRETE MATHEMATICS, 1995, 137 (1-3) : 367 - 370
  • [2] To the Steinitz lemma in coordinate form
    Sevastjanov, S
    Banaszczyk, W
    [J]. DISCRETE MATHEMATICS, 1997, 169 (1-3) : 145 - 152
  • [3] A NOTE ON A MATRIX VERSION OF THE FARKAS LEMMA
    Zalar, Aljaz
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) : 3420 - 3429
  • [4] REGULAR HYPERGRAPHS, GORDON LEMMA, STEINITZ LEMMA AND INVARIANT-THEORY
    ALON, N
    BERMAN, KA
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (01) : 91 - 97
  • [5] AN A∞ VERSION OF THE POINCARE LEMMA
    Arias Abad, Camilo
    Quintero Velez, Alexander
    Velez Vasquez, Sebastian
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 302 (02) : 385 - 412
  • [6] Proximity results and faster algorithms for Integer Programming using the Steinitz Lemma
    Eisenbrand, Friedrich
    Weismantel, Robert
    [J]. SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 808 - 816
  • [7] A VERSION OF THE KRONECKER LEMMA
    Budianu, Gheorghe
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2008, 70 (02): : 37 - 44
  • [8] A colorful Steinitz Lemma with application to block-structured integer programs
    Oertel, Timm
    Paat, Joseph
    Weismantel, Robert
    [J]. MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 677 - 702
  • [9] Proximity Results and Faster Algorithms for Integer Programming Using the Steinitz Lemma
    Eisenbrand, Friedrich
    Weismantel, Robert
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (01)
  • [10] A colorful Steinitz Lemma with application to block-structured integer programs
    Timm Oertel
    Joseph Paat
    Robert Weismantel
    [J]. Mathematical Programming, 2024, 204 : 677 - 702