Mixed-valence bimetallic Ce/Zr-NH2-UiO-66 modified with CdIn2S4 to form S-scheme heterojunction for boosting photocatalytic CO2 reduction

被引:21
|
作者
Li, Simin [1 ]
Li, Han [1 ]
Wang, Yanan [1 ]
Liang, Qian [1 ]
Zhou, Man [1 ]
Guo, Dengfeng [1 ]
Li, Zhongyu [1 ,2 ,3 ]
机构
[1] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China
[2] Changzhou Univ, Adv Catalysis & Green Mfg Collaborat Innovat Ctr, Changzhou 213164, Peoples R China
[3] Changzhou Univ, Sch Environm Sci & Engn, Changzhou 213164, Peoples R China
关键词
Bimetallic MOFs; Ce/Zr-UiO-66-NH2/CdIn2S4; heterojunction; Oxygen vacancies; Heterojunction photocatalyst; Photocatalytic CO2 reduction; HETEROSTRUCTURES; DEGRADATION; MORPHOLOGY; MOF;
D O I
10.1016/j.seppur.2023.125994
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A bimetallic Ce/Zr-UiO-66-NH2/CdIn2S4 (Ce-NU66/CIS) heterojunction close interfacial contact has been designed by in-situ hydrothermal co-synthesis of Ce/Zr-NH2-UiO-66 and CdIn2S4. The one-pot-synthesized heterojunction was employed for CO2 reduction without any sacrificial agent. The Ce-NU66/CIS exhibits visible-light-active characteristics accompanied by improved excited charge separation, along with high surface area and well-dispersed heterojunction structure compared to the pristine MOF and CdIn2S4. Doping Ce ions can produce some oxygen vacancies (OVs) and enhance the electron density surrounding Zr4+ ions, which ultimately resulted in an increase in the photocatalytic effect. In the absence of any sacrificial reagents, the optimized 8 wt% Ce0.2NU66/CIS sample exhibited significantly improved photocatalytic CO2 reduction activity, with CO production rate of 6.01 mu mol center dot g(-1)center dot h(-1) and a high CO selectivity of 54.98 %, which were 3.72 and 1.96 times contrasting to the original CdIn2S4, and 17.83 and 2.47 times in comparison of NU66, respectively. Consequently, the bimetallic Ce/Zr-UiO-66-NH2/CdIn2S4 could have the potential to be used as a photocatalyst with improved properties for studying CO2 reduction. It may provide a rational design for constructing mixed-valent bimetallic for soler-driven CO2 conversion.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fabrication of porous octahedron-flowerlike microsphere NH2-UiO-66/CdIn2S4 heterojunction photocatalyst for enhanced photocatalytic CO2 reduction
    Hong, Long-fei
    Guo, Rui-tang
    Zhang, Zhong-wei
    Yuan, Ye
    Ji, Xiang-yin
    Lin, Zhi-dong
    Pan, Wei-guo
    JOURNAL OF CO2 UTILIZATION, 2021, 51
  • [2] Hierarchical S-Scheme Heterostructure of CdIn2S4@UiO-66-NH2 toward Synchronously Boosting Photocatalytic Removal of Cr(VI) and Tetracycline
    He, Jiale
    Hu, Jianqiang
    Hu, Yingfei
    Guo, Shien
    Huang, Qingling
    Li, Yuqin
    Zhou, Guobing
    Gui, Tian
    Hu, Na
    Chen, Xiangshu
    INORGANIC CHEMISTRY, 2022, 61 (49) : 19961 - 19973
  • [3] Z-Scheme Heterojunction CdIn2S4/BiVO4 with a Spherical Structure for Photocatalytic CO2 Reduction
    Wu, Peiran
    Wu, Yi
    Shi, Zhou
    Chen, Bin
    Wen, Jili
    Na, Shinuo
    Xia, Wentian
    Yoriya, Sorachon
    He, Ping
    Huang, Kai
    Liu, Qizhen
    Wu, Jiang
    ACS APPLIED NANO MATERIALS, 2025, 8 (12) : 5979 - 5991
  • [4] Construction of an S-scheme Bi2S3/CdIn2S4 heterojunction for the photocatalytic generation of methyl formate
    Sun, Lipeng
    Wu, Wenting
    Wei, Ruiping
    Gao, Lijing
    Zhang, Jin
    Xiao, Guoming
    Pan, Xiaomei
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (41) : 19235 - 19242
  • [5] Constructing an S-Scheme Heterojunction between CdIn2S4 and an In2O3 Catalyst for Enhanced Photocatalytic Activity
    Yuan, Chengyu
    Zou, Xuejun
    He, Fan
    Dong, Yuying
    Cui, Yubo
    Ge, Hui
    Hou, Yang
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (08):
  • [6] Fabrication of CdIn2S4/ZnS S-scheme heterojunction via in-situ phase transformation for boosting photocatalytic conversion of organic compounds
    Liang, Zhi-yu
    Zhan, Er-da
    Wang, Ying
    Zhuang, Guo-xin
    Wei, Jin-xin
    Wen, Yong-lin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 92 : 300 - 311
  • [7] A dual defect co-modified S-scheme heterojunction for boosting photocatalytic CO2 reduction coupled with tetracycline oxidation
    Jia, Xuemei
    Hu, Cheng
    Sun, Haoyu
    Cao, Jing
    Lin, Haili
    Li, Xinyue
    Chen, Shifu
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 324
  • [8] S-scheme heterojunction photocatalysts for CO2 reduction
    Wang, Linxi
    Zhu, Bicheng
    Zhang, Jianjun
    Ghasemi, Jahan B.
    Mousavi, Mitra
    Yu, Jiaguo
    MATTER, 2022, 5 (12) : 4187 - 4211
  • [9] Fabrication of UiO-66-NH2/Ce(HCOO)3 heterojunction with enhanced photocatalytic reduction of CO2 to CH4
    Yuan, Nicui
    Mei, Yuxin
    Liu, Yuwei
    Xie, Yating
    Lin, Baining
    Zhou, Yonghua
    JOURNAL OF CO2 UTILIZATION, 2022, 64
  • [10] S-Scheme Heterojunction Photocatalysts for CO2 Reduction
    Li, Mingli
    Cui, He
    Zhao, Yi
    Li, Shunli
    Wang, Jiabo
    Ge, Kai
    Yang, Yongfang
    CATALYSTS, 2024, 14 (06)