Electromagnetic Interaction into the Lagrangian Density Fermi Field: Fractional Formulation

被引:2
|
作者
Alkhamiseh, Bashar M. [1 ]
Alawaideh, Yazen M. [2 ]
机构
[1] Univ Jordan, Dept Phys, Amman 11942, Jordan
[2] Middle East Univ, MEU Res Unit, Amman, Jordan
来源
JORDAN JOURNAL OF PHYSICS | 2023年 / 16卷 / 03期
关键词
Hamiltonian formalism; Fractional derivatives; HAMILTONIAN-FORMULATION; CLASSICAL FIELDS; EQUATIONS; TERMS;
D O I
10.47011/16.3.5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional form of the electromagnetic interaction into the Lagrangian density Fermi field is introduced using the left-right Riemann-Liouville fractional derivative. Agrawal procedure is employed to obtain Euler-Lagrange equations in the Riemann-Liouville fractional form. Then, the fractional Hamiltonian for these systems is constructed, which is used to find Hamilton's equations of motion in the same manner as those obtained by using the formulation of Euler-Lagrange equations from variational problems. It is found that the classical findings are derived as a special case of the fractional formulation for Euler-Lagrange and Hamiltonian equations in the limit n =1.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 50 条
  • [1] Fractional formulation of Podolsky Lagrangian density
    Al-Oqali, Amer D.
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2022, 9 (02): : 136 - 141
  • [2] COMPOSITE FERMIONS QED LAGRANGIAN DENSITY IN FRACTIONAL FORMULATION
    Al-Oqali, Amer D.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2023, (02): : 63 - 68
  • [3] Fractional Canonical Quantization of the Free Electromagnetic Lagrangian Density
    Jaradat, E. K.
    Hijjawi, R. S.
    Khalifeh, J. M.
    JORDAN JOURNAL OF PHYSICS, 2010, 3 (02): : 47 - 54
  • [4] Maxwell's equations and electromagnetic Lagrangian density in fractional form
    Jaradat, E. K.
    Hijjawi, R. S.
    Khalifeh, J. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (03)
  • [5] ON THE LAGRANGIAN FORMULATION OF A CHARGED SPINNING PARTICLE IN AN EXTERNAL ELECTROMAGNETIC-FIELD
    COGNOLA, G
    VANZO, L
    ZERBINI, S
    SOLDATI, R
    PHYSICS LETTERS B, 1981, 104 (01) : 67 - 69
  • [6] Normalized solutions for fractional nonlinear scalar field equations via Lagrangian formulation
    Cingolani, S.
    Gallo, M.
    Tanaka, K.
    NONLINEARITY, 2021, 34 (06) : 4017 - 4056
  • [7] LAGRANGIAN FORMULATION OF MAXWELL'S FIELD IN FRACTIONAL D DIMENSIONAL SPACE-TIME
    Muslih, Sami I.
    Saddallah, Madhat
    Baleanu, Dumitru
    Rabei, Eqab
    ROMANIAN JOURNAL OF PHYSICS, 2010, 55 (7-8): : 659 - 663
  • [8] ON THE LAGRANGIAN FORMULATION OF THE FIELD-THEORY
    MINKEVICH, AV
    FYODOROV, FI
    ACTA PHYSICA POLONICA B, 1980, 11 (05): : 367 - 377
  • [9] LAGRANGIAN FORMULATION OF PHONON FIELD EQUATIONS
    LEVINE, AD
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (11) : 1615 - &
  • [10] Microscopic theory of the interaction of ultracold dense Bose and Fermi gases with an electromagnetic field
    Krutitsky, KV
    Burgbacher, F
    Audretsch, J
    LASER PHYSICS, 2000, 10 (01) : 15 - 20