Thermal shock fracture analysis of auxetic honeycomb layer based on non-Fourier heat conduction

被引:7
|
作者
Hu, J. S. [1 ,2 ]
Wang, B. L. [1 ]
Hirakata, H. [2 ]
Wang, K. F. [1 ]
机构
[1] Harbin Inst Technol, Shenzhen Campus, Harbin 150001, Peoples R China
[2] Kyoto Univ, Dept Mech Engn & Sci, Kyoto daigaku Katsura,Nishikyo ku, Kyoto 6158540, Japan
基金
中国国家自然科学基金;
关键词
Non -Fourier effect; Auxetic honeycomb layer; Thermal shock fracture; Critical temperature; NEGATIVE-POISSONS-RATIO; REENTRANT FOAM MATERIALS; NONLINEAR PROPERTIES; CELLULAR MATERIALS; CRACK; DEFORMATION; PROPAGATION; RESISTANCE; LEQUATION; BEHAVIOR;
D O I
10.1016/j.engstruct.2022.115581
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Auxetic honeycomb layer (HL) is a typical metamaterial with a negative Poisson's ratio. In this paper, the thermal shock fracture problem of the auxetic HL is investigated based on non-Fourier heat conduction. The uncracked non-Fourier temperature and thermal stress field are determined by the separation of variables method and the constitutive model of auxetic HL. The corresponding thermal stress intensity factor (TSIF) is obtained in numerical form. Based on the TSIF and the fracture toughness criterion, the critical temperature of auxetic HL is predicted. There is a clear difference between the results based on the non-Fourier and Fourier models. The maximum thermal stress and TSIF of the auxetic HL obtained from the non-Fourier model are both significantly higher than those obtained from the Fourier model. If non-Fourier effects are not taken into account, the critical temperature of the auxetic HL is also overestimated. In addition, the auxetic property can increase the critical temperature of the HL, whether based on the non-Fourier or Fourier model. The results demonstrate the good potential of the auxetic HL in the thermal protection system application.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Non-Fourier heat conduction induced thermal shock fracture behavior of multi-crack auxetic honeycomb structures
    Junsong HU
    Baoling WANG
    Yang YANG
    Dong XIE
    [J]. Applied Mathematics and Mechanics(English Edition)., 2024, 45 (12) - 2112
  • [2] Thermal shock fracture of honeycomb-based porous thermoelectric materials with non-Fourier heat conduction
    Cui, Y. J.
    Li, W. J.
    Wang, K. F.
    Wang, B. L.
    Guo, S. L.
    [J]. CERAMICS INTERNATIONAL, 2024, 50 (01) : 2151 - 2161
  • [3] Fast transient thermal analysis of Fourier and non-Fourier heat conduction
    Loh, J. S.
    Azid, I. A.
    Seetharamu, K. N.
    Quadir, G. A.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (21-22) : 4400 - 4408
  • [4] Numerical analysis of non-Fourier heat conduction dynamics in the composite layer
    Yuvaraj, R.
    Senthilkumar, D.
    [J]. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2023, 17 (03) : 9597 - 9615
  • [5] A finite element method for non-Fourier heat conduction in strong thermal shock environments
    Wang B.-L.
    Han J.-C.
    [J]. Frontiers of Materials Science in China, 2010, 4 (3): : 226 - 233
  • [6] Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction
    Chang, D. M.
    Wang, B. L.
    [J]. ENGINEERING FRACTURE MECHANICS, 2012, 94 : 29 - 36
  • [7] Effect of temperature-dependency of material properties on thermal shock fracture of solids associated with non-Fourier heat conduction
    Liu, Xue-Feng
    Chang, Dong-Mei
    Wang, Bao-Lin
    Cai, Lan-Rong
    [J]. THEORETICAL AND APPLIED FRACTURE MECHANICS, 2018, 93 : 195 - 201
  • [8] Causality in non-fourier heat conduction
    Camacho de la Rosa, A.
    Esquivel-Sirvent, R.
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2022, 6 (10):
  • [9] Thermal Modeling and Analysis of a Thermal Barrier Coating Structure Using Non-Fourier Heat Conduction
    Akwaboa, Stephen
    Mensah, Patrick
    Beyazouglu, Ebubekir
    Diwan, Ravinder
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2012, 134 (11):
  • [10] Non-Fourier heat conduction in 2D thermal metamaterials
    Li, Zheng-Yang
    Mellmann, Marius
    Wang, Yanzheng
    Ma, Tian-Xue
    Yan, Dongjia
    Golub, Mikhail V.
    Hosseini, Seyed Mahmoud
    Liu, Donghuan
    Wei, Peijun
    Zhang, Chuanzeng
    [J]. MATERIALS TODAY COMMUNICATIONS, 2024, 38