Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus

被引:1
|
作者
Mbopda, B. Tamko [1 ]
Issa, S. [1 ,2 ]
Guiem, R. [3 ,4 ]
Noutchie, S. C. Oukouomi [4 ]
Ekobena, H. P. [1 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Biophys, POB 812, Yaounde, Cameroon
[2] Univ Maroua, Natl Adv Sch Mines & Petr Ind, Dept Refining & Petrochem, POB 46, Maroua, Cameroon
[3] Univ Maroua, Natl Adv Sch Engn Maroua, Dept Basic Sci Teachings, POB 46, Maroua, Cameroon
[4] North West Univ, Fac Nat & Agr Sci, Dept Math & Stat Sci, ZA-2735 Mafikeng, South Africa
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 11期
关键词
TRANSMISSION DYNAMICS; INFECTION MODEL; STRATEGIES; HBV;
D O I
10.1140/epjp/s13360-023-04534-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A mathematical model of viral hepatitis B that takes into account healthy cells, infected cells and free viruses is studied in this paper. This model takes into account spatial mobility of all the three populations group mentioned and also drug treatment, the Rough-Hurwitz criteria are used to determine the stability conditions of this model. The traveling wave solutions are obtained by the exp(-Phi(xi))- expansion method in order to better appreciate the mechanism of infection by the hepatitis B virus and we obtain the bright, dark type profiles and show the effects of drug treatment on the amplitude of the solutions which, allows us to give more information on the treatment and control of the disease, we found that an increase in the dose of drug treatment promotes the development of healthy cells but that this increase significantly reduces the density of the viral population. Numerical simulations are carried out to verify the analytical predictions.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Travelling waves of a nonlinear reaction-diffusion model of the hepatitis B virus
    B. Tamko Mbopda
    S. Issa
    R. Guiem
    S. C. Oukouomi Noutchie
    H. P. Ekobena
    [J]. The European Physical Journal Plus, 138
  • [2] Travelling waves in a reaction-diffusion model for electrodeposition
    Bozzini, Benedetto
    Lacitignola, Deborah
    Sgura, Ivonne
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (05) : 1027 - 1044
  • [3] Generalized travelling waves for reaction-diffusion equations
    Berestycki, Henri
    Hamel, Francois
    [J]. PERSPECTIVES IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS: IN HONOR OF HAIM BREZIS, 2007, 446 : 101 - +
  • [4] Shock-fronted travelling waves in a reaction-diffusion model with nonlinear forward-backward-forward diffusion
    Li, Yifei
    van Heijster, Peter
    Simpson, Matthew J.
    Wechselberger, Martin
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 423
  • [5] TRAVELLING WAVES OF A REACTION-DIFFUSION MODEL FOR THE ACIDIC NITRATE-FERROIN REACTION
    Fu, Sheng-Chen
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (01): : 189 - 196
  • [6] Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay
    Gan, Qintao
    Xu, Rui
    Yang, Pinghua
    Wu, Zheng
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2010, 75 (03) : 392 - 417
  • [7] On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion
    Sherratt, J. A.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2010, 5 (05) : 64 - 79
  • [8] Travelling Waves in Partially Degenerate Reaction-Diffusion Systems
    Kazmierczak, B.
    Volpert, V.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2007, 2 (02) : 106 - 125
  • [9] Existence and nonexistence of travelling waves of a reaction-diffusion system
    Liu, Guirong
    Qi, Yuanwei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 130 - 139
  • [10] Speed ot travelling waves in reaction-diffusion equations
    Benguria, RD
    Depassier, MC
    Mendez, V
    [J]. REVISTA MEXICANA DE FISICA, 2002, 48 : 109 - 110