Plausible Model Improvement Utilizing the Information Obtained from Data Assimilation

被引:0
|
作者
Yokoyama, Masayuki [1 ,2 ,3 ]
Morishita, Yuya [4 ]
Murakami, Sadayoshi [4 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Rokkasho Res Ctr, Rokkasho, Aomori 0393212, Japan
[2] Grad Univ Adv Studies, SOKENDAI, Kanagawa 2400115, Japan
[3] Res Org Informat & Syst, Inst Stat Math, Tachikawa 1908562, Japan
[4] Kyoto Univ, Dept Nucl Engn, Kyoto 6158540, Japan
来源
关键词
model improvement; data assimilation; multivariate regression; information criterion;
D O I
10.1585/pfr.19.1203006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Data assimilation technique implemented in fusion research has enhanced the modeling capability. The quantitative "gap" between the original model (typically based on physics considerations and/or empirical approach) and the optimized model (obtained through data assimilation) can be utilized to improve the original model to align with the measured data. Such a procedure is proposed here by taking the model of the heat diffusivity of plasmas as an example. It successfully elucidates relevant parameters recognized in the
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Plausible Model Improvement Utilizing the Information Obtained from Data Assimilation
    Yokoyama M.
    Morishita Y.
    Murakami S.
    Plasma and Fusion Research, 2024, 19
  • [2] Ionospheric dynamics and drivers obtained from a physics-based data assimilation model
    Scherliess, Ludger
    Thompson, Donald C.
    Schunk, Robert W.
    RADIO SCIENCE, 2009, 44
  • [3] A Model for Addition of User Information to Sensor Data Obtained from Living Environment
    Kawasaki, Hitoshi
    Ohmura, Ren
    Osawa, Hirotaka
    Imai, Michita
    CYBERNETICS AND SYSTEMS, 2010, 41 (03) : 194 - 215
  • [4] Parametric Model Measurement: Maximizing Information Obtained from Neuropsychological Test Data
    Thomas, M. L.
    Adams, K. M.
    CLINICAL NEUROPSYCHOLOGIST, 2016, 30 (05) : 716 - 718
  • [5] Subseasonal Forecast Skill Improvement From Strongly Coupled Data Assimilation With a Linear Inverse Model
    Hakim, Gregory J.
    Snyder, Chris
    Penny, Stephen G.
    Newman, Matthew
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (11)
  • [6] BENEFIT OF MODELING THE OBSERVATION ERROR IN A DATA ASSIMILATION FRAMEWORK USING VEGETATION INFORMATION OBTAINED FROM PASSIVE-BASED MICROWAVE DATA
    Bolten, John D.
    Mladenova, Iliana E.
    Crow, Wade
    de Jeu, Richard
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5325 - 5326
  • [7] Toward Utilizing Similarity in Hydrologic Data Assimilation
    Lee, Haksu
    Shen, Haojing
    Liu, Yuqiong
    HYDROLOGY, 2024, 11 (11)
  • [8] Utilizing Structured Information from Multiple External Sources in the Context of the Multidimensional Data Model
    Mertens, Matthias
    Krahn, Tobias
    Appelrath, H. -Juergen
    BUSINESS INFORMATION SYSTEMS, BIS 2013, 2013, 157 : 88 - 99
  • [9] Information constraints in variational data assimilation
    Kahnert, Michael
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (716) : 2230 - 2244
  • [10] On A Quadratic Information Measure for Data Assimilation
    Tagade, Piyush
    Ravela, Sai
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 598 - 603