CURVATURE PROPERTIES OF PROJECTIVE SEMI-SYMMETRIC LINEAR CONNECTIONS

被引:0
|
作者
Zlatanovic, Milan L. J. [1 ]
Petrovic, Milos Z. [2 ]
Maksimovic, Miroslav D. [3 ]
机构
[1] Univ Nis, Fac Sci & Math, Dept Math, Visegradska 33, Nish 18106, Serbia
[2] Univ Nis, Fac Agr Krusevac, Kosanciceva 4, Krusevac 37000, Serbia
[3] Univ Pristina Kosovska Mitrovica, Fac Sci & Math, Dept Math, Lole Ribara 29, Kosovska Mitrovica 38220, Serbia
关键词
semi-symmetric linear connection; projective connection; Riemannian metric; curvature tensor; Weyl tensor of projective curvature; EQUITORSION GEODESIC MAPPINGS; METRIC CONNECTION; INVARIANTS; TENSORS;
D O I
10.18514/MMN.2023.4225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a projective semi-symmetric linear connection on a differentiable manifold M endowed with a Riemannian metric g. We start with linearly independent curvature tensors R , e = 0,1,...,5 and derive the tensors W for e = 0,1, ... , 5 that, as we show, coincide with the e e Weyl tensor of projective curvature Wg. This confirms the well-known fact that there does not exist a generalization of the Weyl projective curvature tensor Wg.
引用
收藏
页码:1615 / 1635
页数:21
相关论文
共 50 条
  • [1] CURVATURE PROPERTIES OF METRIC AND SEMI-SYMMETRIC LINEAR CONNECTIONS
    Petrovic, Milos Z.
    Vesic, Nenad O.
    Zlatanovic, Milan L. J.
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1603 - 1627
  • [2] SEMI-SYMMETRIC AND QUARTER-SYMMETRIC LINEAR CONNECTIONS
    GOLAB, S
    TENSOR, 1975, 29 (03): : 249 - 254
  • [3] Some Invariant Properties of Semi-symmetric Metric Recurrent Connections and Curvature Tensor Expressions
    ZHAO Pei-biao
    2. College of Mathematic and Information Science
    数学季刊, 2004, (04) : 355 - 361
  • [4] Finsler metrics and semi-symmetric compatible linear connections
    Vincze, Csaba
    Olah, Mark
    JOURNAL OF GEOMETRY, 2022, 113 (03)
  • [5] Finsler metrics and semi-symmetric compatible linear connections
    Csaba Vincze
    Márk Oláh
    Journal of Geometry, 2022, 113
  • [6] On Randers manifolds with semi-symmetric compatible linear connections
    Vincze, Csaba
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2015, 26 (02): : 363 - 379
  • [7] PROJECTIVE CURVATURE TENSOR OF A SEMI-SYMMETRIC METRIC CONNECTION IN A KENMOTSU MANIFOLD
    Barman, Ajit
    De, U. C.
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (01): : 159 - 169
  • [8] ON A TYPE OF PROJECTIVE SEMI-SYMMETRIC CONNECTION
    Pal, S. K.
    Pandey, M. K.
    Singh, R. N.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2015, 7 (02): : 153 - 161
  • [9] On generalized Berwald manifolds with semi-symmetric compatible linear connections
    Vincze, Csaba
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04): : 741 - 755
  • [10] On a Projective Conformal Semi-Symmetric Connection
    Cui, Jingshi
    Yong, Jon Chol
    Yun, Ho Tal
    Zhao, Peibiao
    FILOMAT, 2019, 33 (12) : 3901 - 3912